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Dynamical Polarizability of Small Metal Particles: Self-Consistent
Spherical Jellium Background Model
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The electronic polarizability of small metal particles is investigated within the framework of
the local-density approximation applied to the spherical jellium model. Self-consistent effec-
tive potentials are used for the determination of the independent-particle susceptibility
Xo( r, r;cu). On the basis of this Xo the self-consistent field response equation, determining
the susceptibility X( r, r;a&) of the interacting electrons, is solved with the inclusion of ex-
change and correlation. In this way we obtain for the first time the self-consistently deter-
mined absorption spectrum of small metal clusters.

PACS numbers: 71.45.Gm, 71.36.+c, 73.30.+y

The understanding of the dynamical screening
properties of small metal particles must play an im-
portant role in the interpretation of several unique
experimental observations reported in the last few
years. In contrast to the predictions based on classi-
cal local electrodynamics, small metal particles
show strongly enhanced photo yield, ' enormously
enhanced van der Waals interactions, size-
dependent frequency of collective modes, and
size-dependent coupling between electron-hole
pairs and collective modes4 (e.g. , size-dependent
Landau damping). As non-self-consistent nonlo-
cal-response models~ 8 do not explain all the vari-
ous experimental findings, we conclude that a
better dielectric theory for the description of the
dynamical response properties of small metal aggre-
gates is required. Experience with both plane metal
surfacess and thin metal films'o suggests that a self
consistent jellium model applied to a spherical parti-

[

cle might provide relevant information about the
screening properties of, at least, the loosely bound
valence electrons of a real metal cluster. Therefore,
a Kohn-Sham-based calculation of both the dynami-
cal susceptibility and the dynamical polarizability
was performed in very much the same fashion as
Stott and Zaremba" and Zangwill and Soven' did
for the atomic case. A prerequisite for this type of
calculation is a knowledge of the size-dependent
self-consistent potential which determines the vari-
ous single-particle states from which the susceptibil-
ity Xo is constructed. Such an investigation was al-

ready performed by the author, ' and the interested
reader is referred to this work.

If an angular momentum representation is used
for the electronic susceptibility X ( r, r ';(a) we need
to solve the following equation for the LIth com-
ponent of X (Rydberg atomic units are used
throughout):

X ((r, r', )c0= X( (r, r', (0) + Jt dr" r" X( (r, r";0() [dV„,(r")/d~]X((r", . ',0()

+ „t dr'"r"'
J dr" r" X( (r, r"',a() [4n'/(2l +1)]B((r",r"')X((r"',r', 0().

In this equation dV„,/dp is the density derivative of the exchange-correlation potential in the ground
state, ' 8((x,y) =2x(& /y'& ', and X(o is the lth component of the independent-particle susceptibility. As was
shown by Zangwill and Soven'2 (see also Ref. 11),X, for the special case l = 1 (which is the only relevant an-
gular momentum in the nonretarded limit) is obtained from the following representation':

Xt(r r', a() = X(1/2m)R(„, (r)r(„,(r') [(1+1)G(+&(r, r', e(„,+c0) + lG( t(r r', e(„,+0()
I,n(

+ (1+1)G('+&(r,r', e(„,—a() + lG(" t (r, r', e(n,
—ta) ].

In Eq. (2), the sum runs over the occupied single-
particle states R(„ in the ground state'3 (with ener-

gy e(„), a( is the frequency of the photon, and the
Green's function G((r, r', E) is obtained from the
self-consistent ground-state potential by expressing
GI by two nonregular solutions of the respective

Schrodinger-like equation as follows':

Herc, jI is regular at the origin, hI fulfills the
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outgoing-wave boundary condition, W(jl, ht) is the Wronski determinant, and e is an arbitrary constant.

Having obtained Xot(r, r', ut) we may solve Eq. (1) for the dipole response. ' Once Xt(r, r', c0) is known, the
induced charge density p;„d( r, r0) due to the external dipole potential —Eozl '"'is obtained from the equa-
tion

pI«( r, co)= —(4vr/3) l Yt o(0)Eo&&2Jl dr'Xt(r r', cu)r',

where Yt II(8) is the normalized spherical harmonic
with I = 1 and m =0. Hence, the polarizability o.,
defined via the total dipole moment p with

P = ztd r r P;„d( r ) =oIEo, can be exPressed with

the help of X ~ as follows:

pOO ~00
~(aI) =

JI~ dr r( —'37rr J dr' 2X t(r, r';&0)r'3)

= Jt dr roI(r;aI).
0

(5)

First, Eq. (1) was solved for the static response,
~= 0, of a small particle of sodium. The result is
shown in Fig. 1. In sharp contrast to the results of
the infinite-barrier model or to the step-density
Thomas-Fermi description, ' the static polariza-
bility of a small metal sphere is not reduced but

enhanced with respect to its classical value. This
behavior can be attributed to a competition of two
different effects: First, as a result of the quantum
size effect a reduction of the classical polarizability,

8, is to be expected, simply because the introduc-
tion of gaps. in the single-particle spectrum (with
otherwise unchanged parameters) reduces the po-
larizability. Second, the presence of a strongly dif-

fuse electronic charge across the surface leads to a

dipole momentum density outside the classica1 sur-
face of the particle, and this density makes the total
dipole moment larger than its classical counterpart.
This effect is illustrated in Fig. 2, which shows the
quantity u(r;0) [cf. Eq. (5)], normalized to 1. As a
a result of the spherical nature of the problem, this
quantity may be viewed as the analog to the in-
duced charge density at a planar jellium surface. '6

Indeed, when comparing this result to that pertain-

ing to a plane surface, I find close similarities, but
also some differences. The most striking similarity
is the structure of the induced charge near the sur-

face, and the most obvious dissimilarity consists of
the finite number of Friedel oscillations inside the
particle which, in addition, are more or less
compressed.

Because the results are in sharp contrast to the
non-self-consistent model calculations, an exact
check of all the numerical work is highly desirable.
Fortunately, this can be done with the help of the
electrostatic-force sum rule recently derived by Sor-
bello. ' 's Starting with Eq. (6) of Ref. 17, the fol-
lowing sum rule can be derived for the dipole com-
ponent of the linear susceptibility of a neutral jelli-
um particle' with a background radius 8:

f R OO ~ OO pOO

1= —', m J
—dr(r/R) dr'2Xt(r r', 0)r'3 —', rr dr—J dr'2Xt(r r', 0)r'3.

This sum rule is fulfilled by our calculated Xt to within a relative accuracy of 10
Next we come to a discussion of the dynamical response. For this purpose we have to solve Eq. (1) (for

l= 1) with a variable frequency c0. The frequency-dependent n(co) is obtained from Eq. (5) and the cross
section for photon absorption, o.(ru), is given by o. (r0) =4m(co/e) Imu(co). Again, the dynamical calcula-
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FIG. 1. Static polarizability of a small metal sphere in

units of its classical value, R', with R the radius of the
particle.
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FIG. 2. Induced polarization density oI(r, 0) [see Eq.
(5)], normalized to unity. n(r, 0) near the surface looks
very similar to the corresponding quantity of a plane met-
al surface (Ref. 16).
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tions are checked with the use of a sum rule, in this
case by a special Kramers-Kronig relation, namely

(2/7T ) J dQ) 0) Imo.'(Q)) = o (0).~o (7)

Figure 3 shows the imaginary part of n(co) for 198
valence electrons of sodium (this corresponds to an
uppermost filled shell of the 4s type). Clearly, both
bound-bound transitions of individual particle-hole
pairs (the numerous narrow cups) and the excita-
tion of collective modes can be observed. Further-
more, there is a broad continuum at higher fre-
quencies resulting from single-pair bound-con-
tinuum transitions. Compared to the non-self-
consistent nonlocal models, ~s we see that, first, the
excitation of single pairs is much stronger; and,
second, the shift of the peak position of the collec-
tive surface mode and of the collective volume
mode, compared to their classical values co~/J3 and

co~, is in the opposite direction. Whereas the sur-
face mode undergoes a red shift, the volume mode
is slightly blue shifted. In sharp contrast, the use of
the hydrodynamical model results in a blue shift of
both types of collective excitation20 (aside from be-
ing unable to describe single-pair excitation in a
realistic fashion). The underlying physics of the
different shift behavior of the surface and the
volume modes is fairly simple to understand. As
mentioned above, there are two competing effects
determining the dynamical behavior of every type

of mode: (1) the quantum size effect, and (2) the
surface diffuseness effect. The surface mode is, of
course, much more strongly influenced by the
softening due to a diffuse surface charge than is the
volume mode, whereas, on the contrary, the level
quantization effect is more important for the
volume mode.

In the numerical calculation of X& I used a com-

plex photon frequency cu +i 5 with 5 = 10
meV= 0.000735 a.u. broadening instead of the pos-
itive infinitesimal co+i0+. This 5, which was in-
troduced just to save computer time, is not to be
confused with a real lifetime of the single-particle
states. This latter effect can be introduced in a
manner as discussed in detail by Wood and Ash-
croft. As no detailed experimetnal information ex-
ists about this quantity in small metal clusters, the
effect of a finite lifetime of the single-particle states
on X is not investigated in the present work. How-
ever, if this 4 is interpreted as a lifetime for use in a
local dielectric constant of the Drude type, the con-
tinuous curve of Fig. 3 would give us the imaginary
part of n, . On comparison of these two curves, the
importance of the electron-hole excitation mechan-
ism can clearly be seen. Especially the width of the
collective modes, as calculated in a self-consistent
nonlocal model, is due to their decay into electron-
hole pairs.

Finally I comment on the polarizability of clusters
with partially filled shell. Because the present for-
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FIG. 3. Imaginary part of the complex polarizability n(cu), in units of R . Effective single-pair excitation, surface
plasmon, as well as volume plasmon excitation are clearly resolved. For comparison, the result of the local Drude
theory is shown. The frequency is given in units of the classical surface-plasmon frequency, au~/J3 = 0.2497 Ry in the
case of Na.
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malism is analogous to the restricted Hartree-Fock
scheme there is no principal difference between,
respectively, partially filled and completely filled
shells. The only modification is that a fractional oc-
cupation number must be introduced for the upper-
most occupied level in Eq. (2). This results in an
intrashell size effect in a(co) whose magnitude,
however, is small for a number of particles as large
as 150.

On the other hand, real-lattice-structure —induced
splittings of the various spherical l shells will modi-
fy the polarizability in a similar way as was dis-
cussed for the ground-state properties in Ref. 13:
Minor changes are to be expected for a highly sym-
metric cluster, whereas considerable changes are to
be expected for clusters of low symmetry for which
a spherical model does not apply. In that case no
detailed information can be obtained on the dynam-
ical polarizability.

In summary, I have presented the first calculation
of the dynamical response of small metal clusters
which includes all essentials of the inhomogeneous
electron gas theory. As is the case with plane metal
surfaces, as a result of a fully self-consistent de-
scription the results deviate strongly from those ob-
tained by non-self-consistent model calculations.

Presently the calculations are extended to obtain
some information both on the photo yield and on
the loss spectrum of fast electrons.

The author is grateful to Professor Dr. E. Zeitler
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