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Elastic Properties of Random Percolating Systems
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We study the macroscopic elastic moduli of an elastic percolating network in the critical re-
gion. A microscopic elastic Hamiltonian is used, which contains a bending energy term. We
find that the rigidity threshold of this system is identical to the percolation threshold p, . By
considering the elastic properties of elements of the infinite percolation cluster we calculate
the critical exponent v which describes the behavior of the elastic stiffness near p, for d = 6
and obtain a lower bound on v for d ( 6. r is considerably higher than the conductivity ex-
ponent t, suggesting that the elastic problem belongs to a different universality class.

PACS numbers: 62.20.-x, 05.40.+j, 46.30.Cn

The problem of elasticity of random percolating
networks has been mostly viewed as analogous to
the problem of electrical conductivity of such sys-
tems. This analogy was first suggested by de
Gennes' in relation to the elasticity of gels and was
later applied more generally. It is obtained within
the framework of the Born model for the micro-
scopic elasticity of a lattice. In this model the elas-
tic energy is given by

where nn denotes nearest neighbors, (u; —uj) ~~
is

the relative displacement of the site j in the direc-
tion parallel to the bond (ij ), ( u; —

u 1)~ is the re-
lative displacement in the perpendicular direction,
and E,~ is a random variable which assumes values
1 and 0 with probabilities p and 1 —p, respectively.
By changing the parameters of the Born Hamiltoni-
an two extreme cases can be obtained: For u = p
the nature of the problem is scalar and the solution
coincides with that of the conductivity problem. In
particular the macroscopic elastic moduli vanish
near the percolation threshold as (p —p, )', where t

is the percolation conductivity exponent. In the
other case where u = I and P = 0 the Hamiltonian
represents a random network of springs. Here the
analogy with the electrical problem is no longer evi-
dent, and the macroscopic rigidity vanishes at a
value of p higher than the geometrical percolation
threshold p, . For simple cubic lattices in all dimen-
sions the rigidity threshold is at p =1, so that a
meaningful study of this problem is limited to cer-
tain particular lattices. For such lattices (e.g. , a tri-
angular lattice in d =2) the value of the elasticity
exponent found numerically is higher than that of
the conductivity exponent t.4 It is clear, however,
that the percolation problem associated with this
type of lattice elasticity differs from the regular

bond or site percolation.
In this work we propose a new model for elastici-

ty of a percolating lattice network. In our model
the rigidity threshold is identical to the geometrical
p, and the relevance of the regular bond percolation
is recovered. We invoke recent results on the
structure of the infinite percolating cluster together
with an analysis of an exactly solvable model of
elastic chains. We obtain the critical exponent 7

which describes the macroscopic elastic moduli near
p, at d =6, and the lower bounds for ~ below six
dimensions. The results show that the elastic
behavior of random percolating networks belongs to
a different universality class than that of the con-
ductivity, and that the critical exponent ~ is consid-
erably larger than the conductivity exponent t.

Our lattice model provides a correct description
of the elastic behavior of a macroscopically inhomo-
geneous composite material made up of locally rigid
regions and regions that are locally very soft (in the
limiting case the soft regions are voids). In such a
system one expects the rigidity threshold to be
identical to the geometrical percolation threshold of
the rigid phase. Near p, the macroscopic rigidity of
the material will be determined by the elasticity of
long and tortuous thin channels of rigid material
which are contained in the backbone of the per-
colating cluster. A suitable lattice model for a con-
tinuous inhomogeneous system at the critical region
should yield a correct description of such structures.
Consider for example a long thin rod made out of
the rigid component of length L and width / « L.
The rod will be relatively soft with respect to
transverse bending forces and will have an effective
elastic constant for bending which depends5 on L as
L . The effective elastic constant for longitudinal
stretching is proportional to L '. Within the
framework of the scalar Born model, both longitu-
dinal and transverse elastic constants of a linear
chain of L bonds, which is the lattice analog of the
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rod, are proportional to L . A similar discrepancy
appears between the elastic behavior of a contorted
continuous chain and that of the corresponding lat-
tice chain within this model. Thus the representa-
tion of a continuous system by a scalar Born lattice
model would overestimate the rigidity of the system
close to p, .

The lattice model we present will lead to a correct
representation of such continuous chains and can
be expected to describe properly a continuous per-
colating system in the critical region. For simplicity
we carry out our discussion for two-dimensional
systems. The generalization to higher dimensions
is cumbersome but straightforward and does not
change our basic results. The elastic lattice Hamil-
tonian of our model has the following form:

H =— X KgKIk5p~g,
i,j,k

(jk nn of i)

+
2 XK~~(ul uj) )), (2)4a', ,

(nn)

where the second part is identical to the central
force term in Eq. (1) and 5$&;k is the change in the
angle between the bonds (ij) and (i,k) connected
to site i. The variables K,j and K;k have the same
meaning as in Eq. (1), G and Q are local elastic con-
stants, and a is the lattice unit length. A similar
type of Hamiltonian has been used for the study of
the vibrational properties of rodlike molecules,
while a more general related Hamiltonian has been
studied by Keating for the elastic properties of co-
valent crystals. 7.

The macroscopic elastic moduli of a lattice net-
work with a Hamiltonian given by Eq. (2) are evi-
dently nonzero for p )p, . The rigidity of the net-
work is supported by the backbone of the infinite
percolating cluster which is made up of rather
stringy chains of bonds with more compact multiply
connected regions superimposed. In order to
understand the macroscopic elastic properties of
such a system we first study the elastic behavior of
a chain formed by a set of N vectors (or bonds) {b,}
of length a. In correspondence with the Hamiltoni-
an in Eq. (2), the local elastic energy depends on
both the relative change 5$, in the angle between
b, and b, t, and on the change 5b; in the length of
bond b, . The elastic energy of the chain is thus
given by

H =— 5/2+ 5b
G Q (3)

i 1 ( 1

When a force F is applied to the end of the chain,

(Fx z)
(R~ —R; )), (sa)

where R; denotes the original position of the end
point of the vector b, . Substituting Eq. (5) into Eq.
(3) we obtain the expression for H for any given
configuration {b;}:

H = F~NS ~ /2G +F aL ~~/2Q,

where S~ is the squared radius ofyyration of the
projection of the locations of sites R; on the direc-
tion of Fx z:

S = [(Fx z) (R 1
—RN)]2,J. ~F2 I —1 N

and

F, b 2

aF;
Note that for very long chains the second term in
Eq. (6) is negligible in comparison with the first
one. This term will be important only for compara-
tively straight chains which are stretched along their
long dimension. We shall disregard this term in the
following calculations. The force constant of the
chain relating the elastic energy to the displacement
squared of the end of the chain is given by

k = G/NSi. (9)

It is important to note that the results given in
Eqs. (6)-(9) can easily generalized to the case in
which only a fraction of the angles {5$;}contribute
to the energy in Eq. (3), and the rest of the angles

the relative changes 5$; in the orientations of the
bonds can be found by minimization of 8'=—H
—F (R~ —Rz), where the expression in the
brackets is the displacement of the end of the chain
from its original position R&. The component of
this displacement in the direction of the force is
given by:

F (R~ —R~)
N N F w

= (Fx z) X5$, Xb, + — Xb, 5b, , (4)
i 1 j i i 1

where z is a unit vector perpendicular to the plane.
The minimization of 8' leads to an explicit expres-
sion for the changes in the relative angles between
the bonds:

(Fx z)
j~i
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are completely rigid. In this case the summations
in Eqs. (7) and (8) are only over the flexible angles.
Thus N and Si2 in Eqs. (6) and (9) should be re-
placed by the total number of flexible angles and by
the squared radius of gyration of the corresponding
set of points, respectively.

If the chain has a form of random walk then
Si2 —N and the force constant would be

kRw (G/a2N2). (10)

Note that in contrast to the elastic force constant,
the analogous electrical characteristic, namely the
conductance of the chain, is proportional to 1/N.
Moreover, the conductance does not depend on the
shape of the chain, while the force constant strongly
depends on both the geometry and the direction of
the force.

The above two-dimensional treatment can be
generalized to higher dimensions. The deformation
of the chain is represented by a sequence of
transformations, where the ith transformation in-
cludes stretching of the bond b; and the rotation of
the bonds b;, . . . , b& around the point R; i. A d-

dimensional infinitesimal rotation can be defined by
a set of (d + 1)(d —2)/2 parameters which define
the orientation of a two-dimensional plane in d-

dimensional space and an angle 5$, which deter-
mines the magnitude of rotation in this plane. Re-
placing the angles in Eq. (3) by the set of rotation
angles $; leads to results which are analogous to
Eqs. (6)- (10).'0

The results obtained above will now be applied to
estimate the critical exponent 7 which describes the
behavior of the macroscopic elastic constants above
the percolation threshold of the network. The argu-
ment we use is related to the nodes and links pic-
ture of the backbone of the infinite cluster above p,
used by Skal and Shklovskii" and de Gennes' to es-
timate the conductivity exponent t. Pike and Stan-
ley' and Coniglio' have recently shown that the
backbone of the infinite cluster can be described as
a network of elements of mean size of the percola-
tion correlation length (—(p —p, ) ". Each ele-
ment is made of a sequence of multiply connected
regions of bonds linked by chains of singly connect-
ed bonds. (The entire element can be disconnected
by cutting any pair of singly connected bonds. ) The
number of bonds Lt(() which belong to those sin-
gly connected chains diverges near p, as Lt(g)

't" (p —p, ) '. '3 The macroscopic elastic stiff-
ness of the backbone is now given by

Kq= K(p pq) =$ kg,

where ~ is the local stiffness constant of the rigid

7 =dv+1. (14)

Using the values of v for percolation" one obtains
r =3.6 in d = 2 and r = 3.55 in d = 3. A more con-
servative lower bound for ~ can be obtained by in-
voking the extreme assumption that all the singly
connected bonds are concentrated in one region and
that they possess a geometry of a random walk. In
this case SI —L

& (() and (E = 2, so that
r ) (d —2)v+2. This lower bound has the values
of 2 in d = 2 and 2.85 in d = 3. Even these values
are considerably higher than the corresponding
values of the conductivity exponent: t = 1.2—1.3 in
d =2, and t =1.9—2.0 in d =3.

Above and at d = 6 the elements of the network
consist almost totally of singly connected bonds.
There v = —,

' and therefore L i(() —('. Since the
fractal dimensionality of the backbone in this case'
is D =2, the total number of bonds on the back-
bone in a region of size ( is also of the order of g .
Thus, in this case the number of bonds in the mul-
tiply connected regions is negligible, and the as-
sumption about the rigidity of these regions is not
needed. From Eq. (9) with N- (2 and Si2 —g2 to-
gether with Eq. (12) one obtains (E ——2 and 7 =4.
We thus propose that ~ = 4 is exact for d ~ 6. Note
that the corresponding conductivity exponent has
the value of t = 3 for d ~ 6.

The arguments we have given lead to the con-
clusion that the problem of the elastic behavior of a
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component and k& is the force constant of a typical
element of linear size ( of the network forming the
backbone of the infinite cluster. This force con-
stant can be related to ( by

k~ ——K(p —p, ) '=~( (12)

where (z is the elastic analog of (z in the case of
conductivity. " From Eqs. (11) and (12) we obtain

r = (d - 2) v+ (E (13)

The force constant k& would be mostly determined
by the softness of the singly connected channels
which contain L&(g) bonds. By assuming that the
multiply connected regions are totally rigid we ob-
tain stiffness of the network which is larger than the
actual one, for all values of p —p, . Therefore the
following expression which is based on this assump-
tion is a lower bound on r We u. se Eq. (9) with
N=Lt(g), while Si is replaced by the radius of
gyration of the set of singly connected bonds S~, so
that k&

—
S& L

&

' ((). Since the singly connected
bonds are distributed randomly over the entire re-
gion of size g, S&

—(. Thus, we obtain (E = 2v+1,
and from Eqs. (12) and (13)'4:
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percolating network with local bending elasticity be-
longs to a different universality class than that of
the related conductivity problem, and that it is
characterized by a different critical exponent. Our
lattice Hamiltonian was chosen to represent correct-
ly the elastic behavior of continuous random com-
posites made up of rigid regions and very soft re-
gions, near the percolation threshold. We suggest
that our results would be relevant to experiments
on such systems. It would also be interesting to
study further the relation between our results and
the numerical results of Ref. 4 which were obtained
for a different elastic Hamiltonian, and to a recent
calculation of the elasticity of an ordered fractal, '

both of which indicate a value for the elastic critical
exponent higher than that of the corresponding
electrical conductivity exponent.
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