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One-Dimensional Classical Many-Body System Having a Normal Thermal Conductivity
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By numerically computing orbits for a chaotic, one-dimensional, many-body system placed
between two thermal reservoirs, we verify directly that its energy transport obeys the Fourier
heat law and we determine its thermal conductivity K. The same value of K is independently
obtained by use of the Green-Kubo formalism. These numerical studies verify that chaos is
the essential ingredient of diffusive energy transport, and they validate the Green-Kubo for-

malism.

PACS numbers: 05.60.+w

Neither phenomenological nor fundamental
transport theory can predict whether or not a given
classical many-body Hamiltonian system yields an
energy transport governed by the Fourier heat law.
Indeed, transport theory circumvents this quite
deep dynamical problem by explicitly postulating
that the many-body problem is analytically unsolv-
able and that dynamics can be replaced by suitably
chosen probability assumptions which are, by defin-
ition, unverifiable in terms of first principles.

In this paper we shall use results from contem-
porary nonlinear dynamics to select a many-body
system which, by direct numerical integration of its
equations of motion, can be shown to obey the
Fourier heat law. Recall that heat flow obeys a sim-
ple diffusion equation which can be regarded as the
continuum limit of a discrete random walk.! Thus,
randomness is an essential ingredient of thermal
conductivity. Fortunately, dynamics has estab-
lished the existence? of a class of Hamiltonian
systems—called K systems—almost all of whose
orbits are, in fact, deterministically random despite
the seeming contradiction of these words.> Thus,
for the first time, the possibility exists of obtaining
the Fourier law from dynamics, a problem which
Peierls* has called one of the outstanding unsolved
problems of modern physics.

In seeking a simple model which can be shown to
obey the Fourier heat law, we have been forced to
meet two requirements. First, we must select a
deterministically random system, and second, we
must choose a system of sufficient simplicity that
numerical analysis is feasible. Thus, we immediate-
ly exclude integrable, near integrable, ergodic
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(only), and mixing (only) systems since they are
not deterministically random; in fact, diffusive en-
ergy transport has never been observed in these sys-
tems.>*® But let us recall that even systems obeying
the Fourier heat law can transport energy in the
form of slowly decaying coherent excitations such
as soundlike pulses and solitary waves. In numeri-
cal experiments which unavoidably consider only a
small number of particles, this phenomenon is quite
troublesome. Specifically, though K or almost K
systems’ guarantee™ ® that these soundlike solutions
will eventually decay, we must find a small chaotic
system in which this decay rate is sufficiently rapid.
In consequence, we have selected a many-body
system which exhibits, as a parameter is varied, the
full range of behavior from integrable to almost X
and which at the same time has no problem with
energy-bearing, long-lived, solitonlike pulses. Fig-
ure 1(a) reveals our model to be a one-dimensional
array of equal mass, hard-point particles. We insist-
ed on a one-dimensional system to eliminate higher

~dimensionality as a crucial element in obtaining a

normal thermal conductivity. The even-numbered
particles in Fig. 1(a) form a set of equally spaced
lattice oscillators with each oscillator being harmon-
ically bound to its individual lattice site and with all
oscillators vibrating at the same frequency w. The
odd-numbered particles are free particles con-
strained only by the two adjacent even-numbered
oscillators. Because each free particle moves like a
clapper between two bells, we have come to call the
system in Fig. 1(a) the ‘‘ding-a-ling’> model. Aside
from the appropriateness of the onomatopoeia, this
name reflects the seeming ridiculousness of
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FIG. 1. (a) The N-particle ding-a-ling model. (b) The
two-particle, periodic system. Here the springs merely
symbolize the harmonic restoring force on each bound
particle and they should not be regarded as actually exist-
ing.

presuming that the ding-a-ling model could have
any relevance to physics. The Hamiltonian for the
N-particle ding-a-ling model may be written

N
H=% S, (P +wiqd) +hard point core, (1)
k=1

where w; equals o for even k and zero for odd k
and where all particles have unit mass. It may be
shown that the dynamics governed by the Hamil-
tonian (1) is uniquely determined by the ratio
E/w?*ig, where E is the energy per particle and /g is
half the lattice distance between two bound parti-
cles. In consequence, we may let w be the funda-
mental parameter of our model after setting /y=1
and E=1. As w tends to zero in Hamiltonian (1),
the system tends to the well-known integrable
hard-point gas. As w increases from zero, a smooth
transition to almost-K-system behavior is observed.
To illustrate the effect of varying w for fixed parti-
cle number, in Fig. 2 we display surfaces of section
for the periodic, two-particle ding-a-ling model
shown in Fig. 1(b). Kolmogorov-Arnold-Moser
curves cover much of Fig. 2(a) at w=0.2, while
chaos dominates in Fig. 2(b) at w =3.0. Moreover,
we have verified that the w value at which almost-
K-system behavior occurs decreases dramatically
with increasing particle number. Turning now to
the question of attenuation for solitonlike pulses, as
a pulse propagates through the lattice of Fig. 1(a) it
gives a fraction of its energy to each bound particle
is passes. As w increases, it may be shown that the
propagation distance to extinction decreases rapidly.
In summary, the ding-a-ling model exhibits a tran-
sition to almost-K-system behavior with control-
lable attenuation of soundlike pulses.

We have established the validity of the Fourier
heat law for our model in two ways. In the first, we
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FIG. 2. Surfaces of section for the periodic, two-
particle system of Fig. 1(b). We plot the intersection of
orbits with the plane ¢ =(g,—q;+1)/~/2=0, with
pi =(p,—p)/V2 >0, the sign of p{ being determined
right after a collision. Coordinates on the surface of sec-
tion are g;=(g;+q1+1)/vV2 and p;=(p2+p1)/V2.
(a) =0.2; (b) @=3.0.

let N be odd in Eq. (1) and place the freely moving
end particles of the ding-a-ling model in contact
with two thermal reservoirs at temperatures
T; =2.5 (left) and Tx=1.5 (right), in arbitrary
units. These reservoirs are taken to be ‘“Maxwelli-
an’’ gases characterized by the velocity distribution

f @)= (lvl/T) exp(—v?27). ()
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When either of the free end particles passed
through an arbitrarily defined system boundary it
was absorbed by the relevant reservoir and then
emitted back into the system with a velocity deter-
mined by the probability distribution of Eq. (2).
The amount of energy AE exchanged with the
reservoir in this way is used to compute the dimen-
sionless average flux (J) at each system boundary,
where

(J()) =113 AE, 3)

i=1

with AE; denoting the energy transfer at the ith
reservoir interaction and n=n(¢) the number of
interactions up to the time ¢ Equality of these two
boundary fluxes signals the onset of a stationary
state. Then, after defining the particle temperature
to be twice its average kinetic energy, we computed
the value of the steady-state internal temperature
gradient V T by obtaining a least-squares straight-
line fit to the temperature data. Finally, we calcu-
lated at w =10 the thermal conductivity K via the
Fourier heat law (J) = —kV T. Because w is large
here, we are at liberty to use very short lattices and
relatively long computation times which greatly
reduces statistical fluctuations. We have considered
two distinct lattices having five and nine moving
particles. The results are summarized in Table I.
Since for N > 4 the critical w value for the onset of
chaos is extremely small, one might expect to verify
the Fourier law for very small . However, as
mentioned earlier, decreasing w below a certain
value permits solitonlike pulses to transport appre-
ciable amounts of energy. Thus for given w, the
lattice size must be chosen long enough to thwart
the effect of solitons to carry energy. In Fig. 3 we
display the behavior of the thermal conductivity at
w=1. Here a normal conductivity indpendent of
length is obtained only when the number of moving
particles is greater than or equal to 11.

As an independent means of verifying our results
we have computed the thermal conductivity K us-
ing a Green-Kubo formula which expresses trans-
port coefficients as integrals of autocorrelation func-
tions.® In particular, the thermal conductivity K for

TABLEIL K, VT, and (J) for N=5,9.

N K vT )
5 0.374 +0.008 —0.180 0.0672
9 0.376 £0.022 —0.105 0.0396

a one-dimensional system of length /N and tempera-
ture Tis given by

K= (,B/TN)L(:(J(t’)J(to))dt’, @)

where J is an average heat current, 8 is the usual
inverse temperature, angular brackets denote an
equilibrium average, and where, for finite systems
Eq. (4) is valid only for times smaller than the
sound transit time across the lattice. Specializing
Eq. (4) to our model, it may be shown® that

_ 1 N/2 N/2
K= NT2(t — 1) i_ﬁug c;{AGAQ;), (5a)

where

4 li—jl<N/4,
c;=10; li—jl=N/4, (5b)
15 li—jl>N/4.

A Q; means the change in energy between time zero
and ¢ in that portion of the lattice between particle i
and particle i + N/2.

To evaluate Eq. (5), we have numerically in-
tegrated orbits for a 48-particle lattice with periodic
boundary condition, i.e., 48 particles moving on a
ring as in Fig. 1(b). In Fig. 4 we display the
behavior of the function K (¢—fy), computed via
Eq. (5), for =10 and w=0.1, respectively. For
o =10 the least-squares straight-line fit gives an
average slope s =0.995, very close to the theoretical
value s =1 expected for diffusive energy transport.
The corresponding value of the conductivity
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FIG. 3. Behavior of the coefficient of thermal conduc-
tivity as a function of the particle number M.
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FIG. 4. Integrated heat current Q as a function of
time, for a 48-particle lattice with periodic boundary con-
ditions. Diffusive energy transfer (lower curve, slope
s=1) is observed for w=10, while the energy initially
propagates like sound for w=0.1 (upper curve, slope
s=2).

K =0.353 +£0.026 is in excellent agreement with
the reservoir value for K in Table I and thus con-
firms the validity of the Green-Kubo formula. For
w=0.1, the initial slope agrees with that predicted
for soundlike energy propagation characteristic of
the hard-point gas (s=2, solid line). For longer
times the slope decreases, since an increasing
amount of energy is transported diffusively. How-
ever, the full transition to normal thermal conduc-
tivity can be barely observed because the data satu-
rate for ¢t — ¢ty > 10, as a result of finite lattice size.
In this work we have established the validity of
the Fourier law of heat conduction for a one-
dimensional nonlinear system via direct integration
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of Hamilton’s equations. Two independent ap-
proaches to the problems were used. First, if the
system is placed between two thermal reservoirs at
different temperatures, the steady-state heat flux is
proportional to the temperature gradient, the coeffi-
cient of thermal conductivity being the negative of
their ratio. Second, we have verified that the mean
square energy change of Eq. (5a) grows linearly
with time, as required for diffusive energy trans-
port, and thence have computed the thermal con-
ductivity K via a Green-Kubo formula. The fact
that the same conductivity was obtained in these
two cases provides striking mutual confirmation of
both results. Moreover, it provides a major vindi-
cation of the Green-Kubo formalism.
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