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We have performed Monte Carlo random-walk experiments on a one-dimensional periodic
lattice with a trapping site using the logistic map as a generator of pseudorandom numbers.
Comparison with analytical results indicates that, when it has sensitive dependence to the ini-
tial conditions, this map provides a true pseudorandom generator.

PACS numbers: 02.50.+s, 05.40.+j

Iterations of continuous maps of an interval onto
itself provide the simplest examples of models for
dynamical systems.! In spite of their structural sim-
plicity, such models exhibit a variety of behaviors,
including limit points, limit cycles, and chaotic at-
tractors. In the present work, we focus our atten-
tion to those regimes where the behavior (although
fully deterministic) appears as chaotic, i.e., shows
profound similarities to the sample function of a
random process. For a given initial condition, the
iteration of a continuous map generates an orbit
which yields a sequence of pseudorandom numbers.
The frequency of realization of a particular number
within a given interval defines a probability density
which must be independent of the initial condition
in order that such a generator qualify as a random
generator.? In a mathematical sense, this amounts
to imposing the existence of an invariant measure,
absolutely continuous with respect to Lebesgue
measure.

However, the existence of absolutely continuous
measures has been proved only in a limited number
of cases. No general theorem is available but a con-
jecture by Ruelle for general dynamical systems
states that if a system possesses sensitive depen-
dence to initial conditions (i.e., a system with posi-
tive Liapunov characteristic exponents), then the
invariant measure(s), when conditioned onto the
unstable manifold(s), should be absolutely continu-
ous.?

Now, restriction to maps of the interval makes
the case easier because when there is an unstable
direction, then there is no space for a stable direc-
tion. When the map is everywhere expanding, the
Liapunov characteristic exponent is clearly positive,
and in this case the existence of an absolutely con-
tinuous invariant measure was shown.*> A map of

the interval with a critical point is of course not uni-
formly expanding; however, it was proved that
there is an absolutely continuous invariant measure
when the critical points have orbits which eventual-
ly land on unstable fixed points.*’ This result
holds for maps whose critical points have orbits that
do not come close to the critical point.>® Very re-
cently, it was shown that an absolutely continuous
invariant measure exists when the Liapunov ex-
ponent is positive and the inverse of the map is con-
tracting.!?

These rigorous results appear to converge and
lend support to Ruelle’s conjecture. However, a
dissonant claim!! was recently presented on the
basis of a numerical study of the logistic map of the
interval [0,1]:

Xp+1=S(x,)=Rx,(1—x,). (1)

Kozak, Musho, and Hatlee considered this map as a
pseudorandom number generator and they used
Monte Carlo simulation to calculate the average
walk length for trapping on a periodic one-
dimensional lattice with a centrosymmetric trap.
They arrived at the conclusion that comparison with
exact results suggests that the only truly chaotic se-
quence is the one for R = 4.1

In the present work we reconsider such a numeri-
cal simulation in order to clear up the underlying
experimental bias where the apparent discrepancy
between Kozak, Musho, and Hatlee’s conclusion
and Ruelle’s conjecture originates. When compar-
ing numerical data with exact theoretical results,
one must be careful about the deterministic charac-
ter of the sequences of pseudorandom numbers
generated by the iteration of the logistic map. In
particular one must eliminate the short-range corre-
lations inherent to such an iterative procedure.
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This can be performed in two complementary ways:
either by introducing such correlation effects in a
reformulation of the theory, or by numerically re-
moving these correlations by taking some high
iterate of the logistic map as the random number
generator. Using both methods we obtain results
which give strong experimental support to Ruelle’s
conjecture.

The use of the nonlinear map (1) as a random
number generator for a one-dimensional random-
walk experiment requires characterization of the in-
terval explored by the successive iterates of (1):
For given R, this interval is [+R>(1—+R),5R 1.
Then by defining a cutoff separating this interval
into two subintervals, one makes the random walk-
er step either to the right or to the left depending
on which subinterval the iteration lies in. If there
exists an absolutely continuous invariant measure p
defined on the orbit (sequence of numbers), then
the problem is well defined in the sense that the
walker has on the average a probability p for mov-
ing to the right and 1—p for moving to the left;
here p is defined as the p measure of the right
subinterval.

In previous work,'! the symmetric case
p=1—p= % was investigated; in particular Mon-
troll'? proved that the expected walk length for a
walker to be trapped starting from the site s is given
by

<n(s)>theor=s(N_s) (2)
where N is the lattice period. Note that the sym-

metric probability condition imposes a rather dras-
tic, but unnecessary [and possibly misleading (see
below)] constraint, which can be relaxed. Mon-
troll’s result then generalizes to!?

<n (s )> theor

-/A-pF]
M T ra=m1"

In the numerical experiment, the expected walk
length is evaluated as follows: Simulations are per-
formed for 4" (= 2000 to 800000) walkers starting
from each of the N —1 nontrapping lattice sites.
The numerical average (n(s)) .y, is obtained by
calculating n (s) for each of these sites and averag-
ing over the .#” walkers. In the absence of any bias
in the sequence of pseudorandom numbers, the nu-
merical estimate (7 (s))ex, should be close to
(n(s)) weor Within statistical error; the statistical er-
ror decreases with increasing 4 as 1/4° Y2 for N
large, according to the central-limit theorem. Note
that in general the statistical error is not only a
function of 4~ but also of s, p, and N. Our calcula-
tion of the statistical error is in excellent agreement
with the numerical value (see below).

For R =4, the map (1) possesses an absolutely
continuous invariant measure with respect to Le-
besgue measure with density p(x)=(1/7)
x [x(1=x)]Y2'% Numerical experiments carried
out with symmetric cutoff x,=+ (p=+) yield
results similar to those reported in Ref. 11; see
Table I, 1.1. Experiment and theory are in agree-

T =2 |8

TABLE 1. Average length for trapping from individual site,{n (s)), on an N =13 periodic lattice. We restrict our
presentation to two representative starting sites. Complete results will be given in Ref. 13; (7 (5)) teor is Obtained from

Eq. (3).
N (n(s)>exp(,f <n(s))expt,f2 <n(s)>expt, Vi <”(s)>theor
1.1: R=4, 8 39.93 40.00
P=F, Xe=7 9 36.29 36.00
12: R=4, 8 20.98 23.46 22.75° 22.76
p=%, xe=1 9 22.06 25.74 24.75° 24.54
13: R=338, 8 103.6 38.91° 40.00
p=%, X.=0.6902 9 91.51 34.97° 36.00
1.4: R =3.8275, 8 16.64 17.62° 17.52
p=0.7254, x,=0.4 9 18.75 19.58° 19.37
1.5: R=3.62, 2 26.39 21.36° 21.12
p=02919, x,;=+ 3 24.09 22.12° 21.84
2n =10. by =20.
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ment within statistical error; the mean standard de-
viation is of the order of 1% for.#"=20000. How-
ever, considering the monotonic behavior of the
map (1) on each subinterval, one could expect a
systematic discrepancy due to the existence of
short-range correlations. By direct numerical com-
putation, we find that two-point correlation func-
tions (with the condition that the first point belongs
to one of the two subintervals) show exponential
decay with a correlation length equal to the
Liapunov  characteristic exponent, A =1In2.
Although such correlation effects are always experi-
mentally present, they are buried in the statistical
error, because of their low amplitude. In order to
make them observable in the random-walk experi-
ment, fairly prohibitive statistics (L#"=107) would
be required.

It is important to realize that, in order to test the
existence of an absolutely continuous ‘invariant
measure, investigations cannot be limited to one
particular cutoff (x.=+), and must be extended to
values of p between 0 and 1. Now, for arbitrary
cutoff values, a new correlation effect enters the
problem; indeed not only must successive steps be
independent but each step has to be weighted with
the same probability, p or 1—p, when the walker
moves to the right or to the left. As soon as one of
the boundaries of either subinterval, [$RZ2(1
—+R),x.] or [x.,+R], is not mapped onto one of
the boundaries of the whole invariant subinterval
[+R*(1—+R),sR], p becomes a conditional

probability which depends on the preceding step.
This non-Markovian effect can lead to a strong
discrepancy between theory and experiment as illus-
trated in Table I, 1.2. In this case, failure to get a
fixed p for each step arises from partial overlap of
the invariant interval with the iterate of one of the
two subintervals. Further experiments performed
with a higher iterate f” of the logistic map lead to
considerably better agreement with theory. Numer-
ical computation of the probability p for each step
indeed shows convergence to the mean value of p
as n is increased. Then each subinterval is mapped
several times onto the invariant interval with the
result that the relative importance of the mismatch
diminishes with the number of mappings.

Whatever the cutoff value x,, one can always
compensate numerically for the ill definition of p at
each step by using a sufficiently high iterate of f.
However, for R =4 and particular cutoff values
—that is, the nth inverse iterates of the critical
point % of the logistic map for all »— this ill defini-
tion of p strictly disappears when one considers
f"*1 as the random number generator, as illustrat-
ed in Table II for x.=inff~'(5). For this simple
case we obtain, as expected, good numerical results
when using f2, which reflects a two-step correlation
effect. We have also developed a theoretical
analysis for this non-Markovian behavior'?® which
yields expected walk lengths in agreement with our
numerical simulations performed with f (see Table
1D.

TABLE II. Average walk length for trapping from individual site, (n(s)), on an
N =13 periodic lattice for R =4, p=% (xc=%— 1/2\/5) and with use of f and f?,
respectively. (7 (s)) meor is derived from Eq. (3). Exact results obtained for a non-

Markovian two-step effect random walk (Ref. 13) are shown in the second column and
compare well with experimental results when f is used.

s <”(s)>!heora

<n (s)>expt;f

<I1(S)> <n(s)>theor

expt; f2

1 1.998 1.960 1.992 2.000
2 3.996 3.997 3.983 4.000
3 5.992 5.942 6.010 6.000
4 7.981 7.925 7.957 7.999
5 9.958 9.863 10.00 9.996
6 11.91 11.66 11.98 11.99
7 13.79 13.50 13.94 13.96
8 15.53 15.12 15.84 15.89
9 16.96 16.28 17.63 17.68
10 17.67 16.88 19.00 19.04
11 16.80 16.20 19.19 19.11
12 12.37 12.40 15.39 15.33

aRef. 13.
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We now investigate the general case R # 4. For
the set of Misiurewicz’s® R values, one can easily
convince oneself that the problem simply reduces
to the case R =4, when f* instead of fis used as a
random generator. These R values correspond to
the different stages of the reverse cascade! for
which the 2% *1-band chaotic attractor merges to 2%
bands. Indeed in each of the 2X bands, f* is surjec-
tive as is fon [0,1] for R =4.

We first concentrate on values of R in the last
step of the reverse cascade, R =3.67857 ... to
R =4. For R =3.8, and a bisecting cutoff such that
p=%, we obtain the same poor results as those
presented in Ref. 11 when fis used. However, with
f20 considerable improvement is obtained as shown
in Table I, 1.3. A numerical estimate of the short-
range correlation effects shows unambiguously that
the ill definition of p at each step is responsible for
the misleading claim of Kozak, Musho, and Hatlee.
Our conclusion is corroborated by analysis with dif-
ferent cutoff values, for which the correlation ef-
fects are less dramatic'® and easier to handle with
lower iterates of the logistic map.'3

The results for R = 3.8275 are presented in Table
I, 1.4. For this value of the parameter, the logistic
map shows intermittent behavior preceding the oc-
currence of a stable period-three cycle. This charac-
teristic short-range order in chaotic dynamics is re-
flected in the random-walk experiment by the
necessary use of rather high iterates of f. The bias
increases drastically when R approaches the bifurca-
tion value R =1++/8=3.828427.... Avoiding
this intermittent regularity could be attempted by
selecting those points in the dynamics which are not
in the resonant channels; but even for such points,
memory of the periodicity persists.

We have also extended our numerical study to
the different stages of the reverse cascade, and we
obtain similar results when the nonconnexity of the
chaotic attractor is taken into account. In particu-
lar, the disconnected structure of the attractor mir-
rors into a back and forth walk, for f in the sym-
metric case p=+. For a 2¥~!-band attractor, the
general procedure requires at least the kth iterate of
/. This restricts the analysis to one of the bands of
the attractor which is invariant under f*. Next, by
choosing an arbitrary cutoff in this band, we face
again a situation similar to that encountered in the
last stage of the reverse cascade discussed above.
In Table I, 1.5, we present experimental results for
R =3.62 in the two-band chaotic region. For f2 as
the random number generator, good agreement is
obtained between theory and experiment.
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Many additional numerical experiments were per-
formed for other arbitrary values of R.!* They all
confirm the results presented above: When the
Liapunov characteristic exponent is computed to be
positive, the logistic map can be used as a pseu-
dorandom number generator provided that its
deterministic nature is taken into account. There-
fore we may conclude that the present work lends
strong experimental support to Ruelle’s conjecture.
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