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%e investigate nonrandom, half-random, and random variants of clusters generated by the
"squig" process, using renormalization or Monte Carlo methods. Each variant is compared
to two-dimensional percolation clusters at criticality from the viewpoints of the fractal dimen-
sionalities of the whole, the backbone, the multiconnected parts, the ring hulls, the backbone
links, the shortest paths, and the recurrences of diffusion, hence the fracton dimensionality.
The random variant fits very well when its only parameter s is a bit above 0.4.

PACS numbers: 05.40.+j
While our understanding of the physics and

geometry of percolation clusters and backbones at
criticality has greatly improved, a realistic but
manageable recursive model had been lacking. This
paper describes the geometrical and physical proper-
ties of the fractal "squig clusters" (Ref. 1, Sec.
1.1.1). The squig process (Ref. 2, Chap. 24) is a
versatile new method of constructing fractals by re-
cursive interpolation or extrapolation. The word
"squig" refers to the "squiggly" appearance of
these fractals. The main finding is that the random
squig clusters fit very well. Reference 1, Sec. 1.1.8,
describes noncritical clusters, but our concern here
is solely with critical clusters, which are of interest
in themselves and resemble fractal aggregates and
other lattice random fractals in physics.

We begin with the nonrandom Koch curve drawn
with the generator in Fig. 1(a). Its fractal dimen-
sionality is log38 —1.8928, very close to the
known2 3 percolation value of 2 —P/t in two dimen-
sions. Asymptotically, the cluster fills a Sierpinski
carpet of base b=3. The carpet's midsquare con-
tains another cluster, etc. The backbone between A

and 8 (see Fig. 2) is a Koch curve in this case; its
generator, Fig. 1(b), is the backbone of the overall
generator; the dimensionality is log36. In the back-
bone, multiply connected portions, that Ref. 1 calls
"rings, " alternate with "backbone links" impor-
tant4 to the Ising model at low T. Each ring's
dimensionality is log36. The backbone links ap-
proximate the triadic Cantor set [generator in Fig.

1(c)], of dimensionality log32. For each ring, the
hull boundary'2 is made of the bonds accessible to
paths from the outside. Its generator is either Fig.
1(d) or Fig. 1(e), of dimensionality log35. Now

consider a random ant on our cluster, as an exam-

ple of "ant in a fractal labyrinth. "5 9 By the renor-
malization technique in Ref. 6, the mean square
displacement after n steps is n2~, with

2H=log9/log22. Thus, the dimensionality of the
walk's trail is d„= 1/H = log322. Because
d„) log38, our random walk self-overlaps repeated-
ly. Thus, d„ is a "latent" dimensionality in the
sense of Ref. 1 (Sec. 2.1), while the actual fractal
dimensionality is log38. By Refs. 7 and 8 or the
rules in Ref. 1 (Table I), the fractal dimensionality
of this walk's recurrences to the origin is

1 —Hlog38=1 —log228, and the (spectral) fracton
dimensionality (twice the codimensionality of re-
currence) is log2264. Shortest paths are of dimen-
sionality log33.

In Table I, column 2 shows estimated dimen-
sionalities for the two-dimensional percolation clus-
ter at criticality. Column 3 reports on the new non-
random model. The fit is rough, but not unreason-

FIG. 1. Generators of several Koch curves: (a) our
nonrandom cluster; (b) its backbone; (c) its backbone
links; (d), (e) its rings' hull boundary.

FIG. 2. Second stage of construction of a Koch curve
drawn with use of a square initiator ABCD and the gen-
erator in Fig. 1(a). The allowed crossings of sites are
marked.
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TABLE I. Comparison of fractal dimensionalities of different portions of two-dimensional percolation clusters at criti-
cality and of Ref. 1 clusters.

Percolation
in the plane
at criticality Nonrandom

Ref. 1 clusters

Half-random s =0.4 Random s=0.4

(1) Whole cluster
(2) Ring or backbone
(3) Ring's hull boundary
(4) Backbone links
(5) Random walk's trail
(6) Recurrences to origin

Dfractnn

(8) Shortest paths

2 P/v 1 89a
1.6-1.71 "
1.38 d

1/v —75 '
2.835~
1/3 '

4/3 k

1 10-1 15

log38 —1.8928
log36 = 1.6309 c

log35 —1.4650'
log32 —0.6309 '
log322 —2.815 '
1 —log228 —0.3272~
log 2264 —1.3454'
log33 = 1

log38 —1.8928
1 724c
1 403c
0 682c
2.789 h

0.320~
1.360~
1 145'

log38 —1.8928
1.716'
1.36 « 1.40'
0 739c
2.829
0.331"
1.338'
1 144'

'The theoretical P/v =
4s (Ref. 12) yields 1.8958.

bRefs. 10 and 11b.
'Obtained by renormalization analysis.
dRef. 10c.
'Lo~er and upper bounds by renormalization analysis.
fRef. 4.
sDeduced from lines 1 and 7, by Ref. 7 or the rule in Ref. 1 (Table I). p/v =

4s yields 2.844.

"Obtained by Monte Carlo.
'Deduced from line 7, by Ref. 8 or the rule in Ref. 1 (Table I).
'Deduced from lines 1 and 5, by Refs. 7 and 8 or the rule in Ref, 1 (Table I).
kRef. 8,
'Refs. 10a and 11,

able, except for the shortest paths. The model
remains attractive because of the utter simplicity of
the description and the derivations. The numbers
2, 5, 6, and 8 are also the eigenvalues of the

"transfer matrix"'3 describing the fractal.
The random squig clusters of Ref. 1, Figs. 3 and

4 here, described in the paragraph after the next
one, are far more realistic. There is one parameter:
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FIG. 3. Negative of a sample of a Ref. 1 cluster, with

b = 3 and s = 0.4 after three stages.
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FIG. 4. Sample of the lar'gest ring in the Ref. 1 cluster
with b = 3 and s = 0.4, after four stages.
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FIG. 5. Dependence upon the separation probability s
of the dimensionalities of selected portions of Fig. 3.

the separation probabihty s. Figure 5 reports vart-
ous fractal dimensionalities determined either by
renormalization analysis (described below) or by
Monte Carlo calculation. Our Monte Carlo method
used clusters of linear size 3s, with a few clusters of
linear size 3' as a check, averaged over 1000 runs
for s &0.4 and 2000 runs for s=0.4 as a check.
The mean square displacement is ~ n, the log-log20

graphs being so straight that 2H could be fitted by
hand very precisely. The fitted H increases with s.
Assuming that the true H fall on a very smooth
curve suggests measurement errors below 1/o.10/

Column 5 of Table I reports the dimensionalities
of parts of the fully random variant for s =0.4. The
fit with column 2 is very satisfactory. It improves
further if s =0.4+ e, but column 2 is not certain
enough to pinpoint the best e. Column 4 shows
that the half-random variant fits less well, but is a

good compromise.
We recall from Ref. 1 the process that generates

squig clusters. It begins with the Sierpinski carpet
of base b = 3, which has the very acceptable fractal
dimensionality log38 —1.8928, but is not at all suit-
able as a model here, since —unlike percolation
clusters —the carpet has no dangling bonds and is
infinitely ramified (Ref. 2, Chap. 14; Ref. 14). The
idea (like in Ref. 13) is to leave the carpet's dimen-
sionality unchanged, while either bonds or sites are
deleted recursively. The very versatile "menu"
provided by squigs (Ref. 1, Sec. 1; Ref. 2, Chap.
24; and Ref. 15) offers many possibilities.

We work with the carpet's "dual" obtained as
follows. After midsquares have been removed, a

FIG. 6. The four basic shapes in a cluster backbone, a
realization of the first-order backbone, and its recursive
decomposition.

finite approximation to the carpet is usually a col-
lection of squares, each bounded by four of the
usual bonds. The dual sites are centers of these
squares, and the dual bonds join the centers of car-
pet squares that share a side. The approximate dual
carpet is the sum of eight subcarpets, each linked to
neighbors by many bonds (which is why the carpet
is infinitely ramified). To achieve finite ramifica-
tion, Ref. 1 "decimates" these bonds, i.e., deletes
all but one, recursively. The nondeleted bond may
be either the central one (half-random version) or
selected at random (random version).

Next, Ref. 1 creates dangling bonds via a dif-
ferent rule, "separation. " The already decimated
carpet is made of eight subcarpets, plus eight bonds
linking neighboring subcarpets. Random bond
separation deletes a nondecimated bond with pre-
scribed probability s, which is the only adjustable
parameter in the model. One proceeds in the same
way with each part.

By design, the overall dimensionality remains
log38, but the topology is made finitely ramified and
with dangling bonds. One can prove that point to
point backbones' and rings' dimensionalities are
identical here.

The case s = 1 yields a tree in which the dimen-
sionality of the path joining any two points is 1.2928
(random decimation) or 1.2926 (centered decima-
tion). When s ( 1, these dimensionalities refer to
the path of a random electron through the cluster
(Ref. 1. Sec. 1.1.3; thus motivating the above rule
of separation by the Kirchhoff laws).

The recursive calculation of the fractal dimen-
sionalities of the basic fractal subsets of a Ref. 1

cluster uses the fractal real-space renormalization
group. '6 To illustrate, the cluster backbone in-
volves four basic shapes. For each shape of genera-
tion k, draw (Fig. 6) all possible ways of decimating
and separating. Each is a linear combination of
shapes of order k+1. Adding in all possibilities
with their correct weights yields for the vector of
shapes S a recursion of the form S'= MS, where the
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transfer matrix' M is M=(1 —s)Mt+sM2, the
matrices Mt and M2 resulting, respectively, from
nonseparated and separated configurations. By Ref.
17, the backbone's fractal dimensionality is
logbh, .„, where A. ,„ is the largest eigenvalue of M.
A larger space of basic shapes handles our various
problems via the eigenvalues of one transfer ma-
trix.

The nonrandom variant with which we started in-
volves a "site separation" roughly equiva1ent to
s = 0.5. On all levels of iteration except the lowest,
the dual sites nearest to the midpoints of the sides
of the erased squares are made to reflect a walk
reaching them. Next, when two bonds meet at a
site, join their midpoints, when three bonds meet,
join the midpoints of the bonds that are not col-
linear. The result is Fig. 2.

In conclusion, the random Ref. 1 clusters with
It = 3 were shown to have very desirable properties,
both geometric (fractial and topological) and physi-
cal. These new models may also provide workable
tests for further problems. Higher-base and
higher-dimension variants are available in case of
need.

We are grateful to J. H. Cook and R. F. Voss for
designing Figs. 3 and 4, to Y. Gefen and A. Aharo-
ny for interesting discussions, and to M. E. Fisher
for a fruitful comment.
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