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The effective gauge field action due to an odd number of fermion species in three-di-
mensional SU(N) gauge theories is shown to change by + s~n

~
under a homotopically non-

trivial gauge transformation with winding number n. Gauge invariance can be restored
by use of Pauli-Villars regularization, which, however, introduces parity nonconserva-
tion in the form of a parity-nonconserving, topological term in the effective action.
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The action, I[A, g], for an odd number of mass-
less fermions coupled to SU(IV) gauge fields in
odd dimensions is invariant under space-time
reflection (which we shall call parity). I estab-
lish here, however, that the ground-state cur-
rent, (J,"), a physical quantity, must violate
this symmetry: parity is "spontaneously broken. "
The calculations will be limited to three dimen-
sions, although they can be easily generalized to
higher odd dimensions.

To demonstrate that parity conservation must
be violated in this theory, I make use of an in-
triguing connection between parity nonconser va-
tion and the noninvariance of the action under
homotopically nontrivial gauge transformations.
The argument goes as follows: While the action,
I [A, g], is invariant under local SU(N) gauge
transformations, the effective action, I,if[A j,
may not be—I,ff[A] is obtained by integrating
out fermionic degrees of freedom. In a function-
al integral formulation of the theory, we require
expiI, if[A] to be gauge invariant. If under a
gauge transformation, I,«[A] changes by a num-
ber, the parameters of the theory must be quan-
tized so that number is an integral multiple of
2~. ' ' I find that there are two ways to regulate
the ultraviolet divergences in the calculation of
I f f [A ]. The first way maintains parity as a good
symmetry, but does not maintain gauge invar-
iance: I,it[A] is found to change by an odd multi-
ple of & under a homotopically nontrivial gauge
transformation. The second way introduces a
heavy Pauli-Villars regulator field and subtracts
lim„„i,ft[A, M] from I,ff[A], thus canceling the
gauge noninvariance in I,fr[A], but introducing
parity nonconservation through I,&&[A, M]—a,

three-dimensional mass term Mp p violates
parity conservation and for Mao the fermions
have parity-nonconserving spin equal to' —,'M/~ M

~

I find that limu „I,f f[A, M] contains a
parity-nonconserving topological term, ~sM'[A]—

W[A] is the Chem-Simons secondary characteris-
tic class"- =which changes by +&n under a homo-
topically nontrivial gauge transformation, U„,
with winding number n. Since (J', ) is equal to
'6I f f /'5A p (I ff =I f f [A] —lim„ left[A, Mj ),
(J, ") contains a topological term, due to I,tt[A, M],
which violates parity conservation.

As an alternative to introducing a heavy Pauli-
Villars regulator to restore gauge invariance,
one may simply add the topological term +v W[A]
to the gauge field action. Another way to restore
gauge invariance is to work with an even number
of fermion species, so that the effective action
changes by 2' under a large gauge transforma-
tion. In this case, parity conservation need not
be violated, which is not surprising, since an
even number of fermions in three dimensions can
be paired to form Dirac fermions with parity-

I

conserving mass terms.
The nonconservation of pa.rity in odd dimen-

sions is analogous to the nonconservation of the
axial current in two and four dimensions where
Pauli-Villars regularization introduces a mass
which violates axial symmetry. We therefore
complete the program begun by generalizing the
axial anomaly to higher even dimensions' by
establishing the existence of a similar phenome-
non in odd dimensions. ' The "anomaly" in odd
dimensions appears as a parity-nonconserving
topological term in the ground-state current
(J, "), rather than as a topological term (-*EE)
in &&(J,") (there exists no axial current in odd
dimensions, i.e. , no y, ). ln both cases, the
"anomaly" causes a "physical" ground-state cur-
rent to violate a symmetry of the original action,
I[A, g].

To show that fermions induce a gauge-nonin-
variant term in the action, we begin with the func-
tional integral

Z = Jdgdj dAexpfif[trI"'/2+i/(IJ+A)g]d'x} (1)
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and integrate over the fermion fields:

Z = J dA exp(i( ftr(E'/2)d'x+I, „[A])j,
where

f f [A ]= -i ln det(p +g)

(2)

I use the usual matrix notation A = gT 'A &', where
T' are anti-Hermitian generators of the group.
For definiteness, we work with SU(2) and a doub-
let of fermions~here T'= o'/ 2i, and o' are the
Pauli matrices~ut the results hold in any group
for which II, is the additive group of integers, Z,
and the fermions are in the fundamental repre-
sentation. The Dirac matrices in three dimen-
sions are Pauli matrices (o„io„ io,).

I now demonstrate that det (P+P) and, by (3),
the effective action I,ff[A] are not gauge invariant.
More precisely, I show that

det(P+g) —(-1)~" ~ det(P+g) (4)

under a homotopically nontrivial gauge transfor-
mation, U„, with winding number n. By (3)
this is equivalent to U„:f,«[A) —I,f, [A]+z~n~.

To prove (4), we follow closely the analogous
calculations performed by Witten in four dimen-
sions. ' We use here a Euclidean formulation of
the three-dimensional theory, and we consider
gauge transformations which approach the identi-
ty at large distances; hence the base manifold
is S, rather than A, .

To begin, we observe that det icr„(&„+A&),
=1, 2, 3, may be written det' 'ip„where p,
=y„(s„+A„)and

Since there exists a 4 X4 matrix which anticom-
mutes with ig„ the spectrum of iP, is symmetric
about zero (and is real because is i@, is Hermi-
tian). Therefore, for a particular gauge field,
A„, we may define the square root as the pro-
duct of the positive eigenvalues of ig,[A„]. (It
is of course assumed that there is no zero eigen-
value. ) Since detiP, can be regulated by the intro-
duction of a parity-invariant Dirac mass, ' this
procedure maintains parity as a good symmetry.

We now vary the gauge field along a continuous
path, parametrized by ~, from A„(x", 7) = 0 at ~
= —~ to the pure gauge A&(x", T) = U„' &US„tea
=+~, where U„belongs to the nth homotopy
class (U„has winding number n). The spectrum
of iP, [A] at 7 = -~ is identical to the spectrum
at 7=+~. However, as T is varied from -~ to
+~, the gauge field must pass through configura-

To see this, we write the Dirac equation PP = 0
as

dg/dw = -y 'P4g. (7)

Equation (7) is soluble in the adiabatic approxi-
mation; we choose y(x", T) =f(r) y'(x"), where
y'(x") satisfies the eigenvalue equation

y 'Q, y'(x") =A.(T) y'(x") . (s)

Since the spectrum of y'P, is equal to the spec-
trum of iP„ the eigenvalues A(r) vary continuous-

Q=-C) p =+co

FIG. 1. The eigenvalues of ig4 are plotted along the
vertical axis. One initially positive eigenvalue is
shown to cross zero as T goes from —~ to + ~

tions in field space which are not pure gauge, be-
cause U„ is not continuously deformable to the
identity. Therefore, the eigenvalues of i@~ may
become rearranged as ~ goes from -~ to +~. In
particular, one or more eigenvalues which are
positive at T = -~ may cross zero and become
negative at 7 =+™(see Fig. 1). The square root
of the determinant, det' 'if[A], defined as the
product of the positive eigenvalues of iP, at T
= -~, will therefore change sign if the number of
eigenvalues which flow from positive to negative
values (or vice versa) is odd.

We now recognize that the. family of vector po-
tentials, A&(x", i), is equivalent to an instanton-
like four-dimensional gauge field, A', in the
gauge A'=0 [the space x'=(x", v), i=1, 2, 3, 4, is
the cylinder S, &R]. The remaining components
of A'(x", v) vary adiabatically as a function of v
=x' along the path considered above.

The number of zero crossings of the eigen-
values of iP, [A "(7)] is related to the number of
normalizable zero modes of the four-dimensional
operator

P=y, (&, +A,. ), i=1, 2, 3, 4, (6)

with

(o I)
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ly along the curves of Fig. 1. In the adiabatic
approximation, Eq. (7) becomes

df /dw = -A.(T)f (T)

which has the solution

f(7) =f(0) exp[-g dI. 'A(r')]. (10)

Only if A. is positive for 7 =+~ and negative for
w = -~ is this solution normalizable.

Therefore, there exists a one to one corre-
spondence between the number of normalizable
zero modes of @[A'] and the number of eigen-
values of iP, [A "(T)] which pass from negative to
positive (or from positive to negative) values as
7 is varied from - to +~. The number of zero
modes of @[A'] is well known from instanton
studies. ' If we choose the eigenfunctions of P(,
=0 to be eigenfunctions of y~, y, P, =+/, , and de-
note the number of zero modes of g, (y ) by n,
(n ), then

=+ IIW [A]+I' [A], (13)

where I,ff is finite and W[A] is the parity-non-
conserving Chem-Simons term

W[A] =(1/8~') J d'~ tr(*F A~ --'A~A'A "~ )

(14)

with *E"= —,
' e"' F, . Since only the vacuum

polarization graph and the triangle graph are
divergent, and these two graphs produce ~IIW[A],
I conclude that I' [A] in (13) must be parity con-
serving.

6» fL + 8

here n is the instanton number (the winding
number of U„). Therefore, the total number of
zero modes, Nr, of @is

X,=2n, +n,

which is odd if the winding number n is odd. This
completes the proof of (4): The determinant
changes sign under a large gauge transformation
with odd winding number.

To show that gauge-invariant regularization
procedures, such as Pauli-Villars regularization,
restore gauge invariance at the cost of introducing
parity nonconservation, 1 have performed two

types of calculations —details will be given else-
where.

First, one may calculate lim~ „I,«[A, M] in
perturbation theory'"; I find

Ipf f = Ipf f [A] .11II1 Igf f [Ai M]

Second, in the special case of gauge fields with
constant field strength tensor, F "', the effec-
tive action (3) can be calculated exactly. The cal-
culational procedure is the three-dimensional
analog of the Euler-Heisenberg calculation of the
effective action for constant field strength, as
presented by Schwinger. " I find

I.ff =+W[A]+INA[A]

where IN„[A] is parity conserving, but is non-
analytic in the gauge field. In performing this
calculation, it is necessary to introduce a parity-
nonconserving fermion mass, M, to regulate
divergences in a gauge-invariant manner. ' When
the mass is set equal to zero at the end of the
calculation, however, the parity-nonconserving
term, +IIW[A], does not vanish. (The sign de-
pends upon the sign of the regulator mass. ) The
existence of the nonanalytic expression, I~A[A J,
is characteristic of three-dimensional gauge theo-
ries coupled to massless fermions, where such
terms are known to appear in partial sums of
inf rared-divergent Feynman diagrams. " For the
even more special case of an Abelian, constant
field strength, the ground-state current is given
exactly by

(Z. ) =(g'/8~)*F. I'.

This current is identically conserved, but it
violates parity conservation explicitly since *E"
is a pseudovector.

The discovery of anomalous parity nonconser-
vation in three dimensions has wide ranging con-
sequences. First, the violation of space-time
reflection in. three dimensions may have direct,
measurable consequences in condensed matter
physics, where models of vortex-particle inter-
actions in superconductors are mathematically
equivalent to three-dimensional QED—while the
discussion here is limited to SU(N) theories, par-
ity nonconservation occurs in (J") in QED as
well. The relativistic Dirac equation used here
appears also in a nonrelativistic system as is
seen in the discovery of crystals which model the
four-dimensional anomaly. " At high tempera-
tures, four-dimensional field theories effectively
reduce to three-dimensional theories. Although
fermions are known to decouple at high tempera-
tures, the effective theory in three dimensions,
obtained by "integrating out" the fermions, may
still be relevant in the study of high-temperature
four-dimensional theories. The induced topolog-
ical term +W[A] in I,ff [A] is known to produce
a mass for the gauge fields. ' Not only must
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parity conservation be violated in odd-dimension-
al theories with an odd number of fermions, but
the gauge fields m~st become massive as well.
Since the gauge fields acquire a mass without the
need for Higgs fields, this implies that the analo-
gous phenomenon in solid state physics, the Meiss-
ner effect, may be possible without the need for
a condensate of fermion pairs. Above all, the
discovery of anomalous parity nonconservation
in three dimensions provides a different and

simpler laboratory in which to study the subtle
interplay between "anomalous" violation of sym-
metries and global topological properties of
gauge theories.

Results similar to those presented in this paper
have been obtained independently by L. Alvarez-
Gaume and E. Witten (to be published).

Recently, E. D'Hoker and E. Farhi have shown
how to compensate for the gauge noninvariance
of the fermion determinant in four-dimensional
theories by the addition of bosonic terms to the
Lagrangian. " Also, Niemi and Semenoff have
shown how to derive the results presented here
using the anomaly in two dimensions. '
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phasizing the necessity of parity nonconservation.
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