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A Monte Carlo calculation for light intensities scattered from a random Gaussian-
correlated surface is presented for the first time. It is shown that small randomness on a
grating surface can considerably change the intensities and, in particular, the surface polari-
ton resonances. These results should be used to check perturbation-theory calculations.

PACS numbers: 61.10.Dp, 68.20.+t, 71.45.Gn

The study of surface properties by analyzing the
scattered intensities of light from the surface is of
current interest.! In particular, light scattering is
used to study surface plasmons or polaritons on
grating surfaces.”> However, in modeling these
surfaces it is essential to allow for a random rough-
ness with a given correlation superimposed on the
grating profile. It is also interesting to analyze the
incoherent elastic scattering generated by the ran-
domness of the surface to understand details of the
light-surface interaction,* for example, the localiza-
tion of surface plasmons. So far existing theories
and calculations have relied on expansions of the
scattering equations up to second order in the vari-
ance of the roughness*> or on approximations
whose validity is difficult to qualify because exact
results are not known.

In this Letter, we present a Monte Carlo calcula-
tion that should be able to determine scattering in-
tensities within the statistical error associated with
this technique. The calculation is performed by

taking statistical averages of a given set of scattering
amplitudes obtained for surface profiles consistent
with a Gaussian distribution of heights with a
Gaussian lateral correlation function, generated ac-
cording to precise numerical techniques. The
scattering amplitudes of p -polarized light from each
random sample are computed by using a generaliza-
tion of the theory of Toigo eral.® with periodic
boundary conditions.

The first step in constructing a sample surface is
to generate an uncorrelated Gaussian distribution of
random numbers z,(x), where x is the coordinate
along the surface (assumed one-dimensional for
simplicity) and z, the corresponding random height.
To a good approximation, this is achieved by con-
sidering’

M
z,(x) = Eagj(x)—-i-M, (1)
j=1

where the ag;(x)’s are equally distributed random
numbers in the interval [0,1] with expectation value
and correlation

(ag;(x)) =05, (lag(x)=0.51lag;(y) —0.51) =5 8, 8y, )
so that
(2,(x)) =0, (z,(x)z,(»)) = M3, 3)

In accordance with the central-limit theorem, z,(x) is Gaussian distributed for large M. In practice, M is re-
stricted to only 12; this leads to very small absolute deviations in the tails of the distribution, and the prefac-
tor M/12 in (3) becomes 1. The ag;(x)’s are generated with the efficient shift-register random-number gen-
erator proposed by Kirkpatrick and Stoll.8

Next, to obtain the Gaussian-correlated profile z, (x) is convoluted by a Gaussian:

. too
2:(0) =LY =14 [ “expl— (x —x')/2L%z, (x')dx'. )
With M =12, according to Eq. (3), we thus get

(z.(x)) =0, (z.(x)z.(»)) =expl— (x —y)?/4L?],
(5)
c2= fdx x(2.(0)z,(x))/ fdx (2.(0)z.(x)) =2L2
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so that the root-mean-square distance c; =+/2L.
Because periodic boundary conditions are used in
our actual calculations, we impose z.(x)=z,(x
+a) (this restriction will have no important physi-
cal consequences if the period of the grating
a >> c; ). Therefore, Eq. (4) is transformed into a
sum and evaluated by fast Fourier transformation
of z,(x) using the fast-Fourier-transform (FFT) al-
gorithm. The result is multiplied with the Fourier
transform of the Gaussian (4), and finally an FFT
backtransform performed to obtain z.(x). Note,
however, that proper care has to be taken in choos-
ing the appropriate prefactors at the FFT back-
transform to ensure that relation (5) is satisfied.
The total corrugation function is assumed to be

D(x)=alH cos(2mx/a’) + oz, (x)]. (6)

H is the dimensionless strength of the grating pro-
file with period a’ on which z,(x) is superimposed,
and o is the standard deviation of the roughness.
Calculations were performed with the same periods
a’' of the grating and a of the roughness profiles and
also some with a =3a’, a kind of supergrating, to
check whether artifacts could occur at equal lengths
of both periods. The elastic scattering conditions
are _defined by the incident wave vector ko
=(K,qo), where K and g, are the components
parallel and perpendlcular to, the surface. For the
scattered waves, k~ = (K+Q qQ) is fixed by con-
servation of energy, 93 =[k¢ — (K+Q)?1V2 and
by Q 2wJ/a, the momentum transfer parallel to
the surface, which is quantized because of the
periodic boundary conditions imposed.

The scattering amplitudes are calculated by use of
the extinction theorem,® previously applied by Gar-
cia’ to pure periodic profiles, in excellent agree-
ment with experiments for Ag and Au gratings. In
our case, however, the process of calculation is
more complicated: For a given set of incident
parameters (wavelength A and angle of incidence
), it is necessary to calculate D (x) for many sam-
ples to obtain meaningful statistical averages. In
our calculations, we kept fifty plane waves to
represent the total scattered wave function and
1000 points to perform the necessary x integrals,
and averaged the scattering amplitudes over 100
sample profiles for every set of parameters A and 6.
As will be seen, this procedure yields well conver-
gent results. The material of the grating is
described by a model dielectric constant € (w).1°

We first present numerical computations for par-
ticular values of the parameters. In Fig. 1(a), on
the left-hand side, we present two typical random
profiles generated for the parameters indicated in

the figure. On the right-hand side, we show the
corresponding moduli of the scattering amplitudes
for a wavelength A =5154 A for silver [described by
e(w)=—11+0.33/1.1 In this example, H=0 ,

that only specular (Q 0) reflection would occur
without randomness; random roughness produces
addmonal scattering accompanied by a reduction of
the Q 0 amplitude. As in scattering by a pure
periodic grating, these new amplitudes correspond
to both propagating and evanescent waves. The
former give rise to elastic incoherent scattering,
while the latter represent excited surface modes.
The specular reflectivity is large for small values of
o and ¢;, as it should be on physical grounds.*?

In Fig. 1(b), we plot the average specular intensi-
ty and scattered incoherent intensities J = —1 and
J = —2 as a function of the incident angle 8. The
randomness gives a continuous distribution of in-
tensity in Q space, but in our model, because of the
periodic boundary conditions, these intensities ac-
cumulate around the diffraction beams, and are de-
fined by summing over samples, i.e.,

1Q = ivSIAL |?/N, (7)
i=1 < '

where N =100. Instead of error bars, the dimen-
sions of the points indicate the statistical uncertain-
ty of the calculation by increasing the number of
waves in the expansion of the Green’s function in-
volved in the extinction condition! used to obtain
the solution.

An interesting result is that at grazing incidence,
0 =90°, the whole intensity is coherently reflected
in the specular beam. This was previously obtained
with a perturbation-theory approach up to fourth
order; goo is then small and perturbation theory
can be applied.*

We also considered the effect of the roughness
on a well-defined surface polariton resonance.
Quite recently, Garcia® studied the surface polariton
resonance observed by Tsang and Kirtley!! on a
silver grating at 6=24° for A=5145 A and
a =8000 A. The maximum amplitude of the J =1
polariton wave is obtained for H =0.02 when o =0
in Eq. (6). It is interesting to find out what hap-
pens if o is increased for a given value of ¢; << a.
The results are illustrated in Fig. 2(a), where sam-
ples of the random surface for o # 0 are plotted on
the left-hand side, and the corresponding scattering
amplitudes on the right-hand side. It is clear that as
o increases from 0.000 31 to 0.02 = H, the polariton
amplitude is reduced from 13.2 to 2.5, and its inten-
sity from 175 to 6, i.e., the surface polariton reso-
nance essentially disappears. This is more evident
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FIG. 1. (a) Left-hand side, two samples of random profiles with the parameters indicated on the figure. The period

taken is a = 16000 A

while H=0. Right-hand side, the corresponding moduli | 4| of the scattering amplitudes of p-

polarized light with A = 5154 A. Note the rising of a set of amplitudes when o and ¢; increase. (b) Averaged intensities
[Eq. (7) for N =100] for the left-hand side profiles. Circles, J = Qa/2m = 0; crosses, = — 1; plusses, = — 2.

from the averaged intensity versus @ plotted in Fig.
2(b).

In summary, from our calculations we conclude
the following:

(i) For o =0, the scattered beam has a value near
zero at §; = 24°, a result already obtained in Ref. 9.

(ii) The minimum of the specular beam shifts
and its intensity grows as o increases. The first-
and second-order diffraction peaks increase; the
latter even exhibits a maximum in its intensity
versus 6.

(iii) The specular beam shows the same behavior
for a pure sinusoidal grating when H increases from
H=0.02 to 0.06, but the effect on the first-order
peak is different, i.e., a very small minimum
remains in that case. The second-order peak fol-
lows the same trend as the specular.

(iv) It should be noted that the roughness o has
stronger effects than changes in H.° Because of
nonlinear relations between the corrugation D (x)

1800

and the scattering amplitudes 4},! a small rough-
ness superimposed on a sinusoidal grating must not
be misinterpreted as being due to pure periodic
gratings or to a grating with different Fourier com-
ponents.

(v) Figures 1 and 2 show that upon increasing o,
higher-order evanescent amplitudes (J << -3,
J >0) build up and produce localized surface
plasmons'? near the corrugation minima. In our
view, this happens as a result of the nonlinear rela-
tion between D (x) and the A4}.! By increasing o,
we obtain many higher values 4}(J # 0): This sug-
gests that the surface plasmon is localized in con-
trast to what happens with o =0; only 4 is impor-
tant in that case, giving a delocalized value. This
conjecture remains to be confirmed by further in-
vestigations.

(vi) We performed calculations for a =16000
and 24000 A, obtaining the same results as for
a=a'=8000 A. This proves that equal lengths of
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FIG. 2. (a) The same as Fig. 1(a) for H =0.02, ¢, =355 2\,

245°

and @ =a’'=8000 A. Note the disappearance of the po-

lariton amplitude (J = Qa/27w =1) as o increases, and the appearance of excitations at large Q, i.e., localized plasmons.

(b) The same as Fig. 1(b). Note the evolution of the surface

resonance as o increases. (Open circles, o =0.02; open

squares, = 0.01; solid circles, 0.005; solid squares, 0.0025; triangles, 0.00125; plusses, 0.000 62; crosses, 0.00031.)

This has an effect similar to increased H (see Ref. 9).

the grating and roughness profiles do not affect the
random scattering when a >> ¢;.

In conclusion, we have presented for the first
time an exact Monte Carlo calculation for light scat-
tered from a random rough surface with a Gaussian
lateral correlation. The results presented here
should be used to check perturbation calculations
for the same problems, as well as to better charac-
terize optical rough surfaces.
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