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Vibrational Bethe Lattice with Random Dihedral Angles
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We report an analytical solution for the vibrations of a Bethe lattice having a random and
uncorrelated set of dihedral angles {¢,}. 'The resultant ¢-averaged Bethe lattice provides a
very good fit to the Raman spectra of vitreous SiO?, and is a powerful tool for the treatment
of network and defect vibrations in this and other amorphous solids.

PACS numbers: 63.50.+x, 61.40.Df

The Bethe lattice! is an infinite simply connected
network of points, which has proven useful as an
approximate structure on which to calculate the ele-
mentary excitations of certain amorphous solids.?-8
It has the ability to model exactly the highly or-
dered nearest-neighbor environment of each atom,
while imposing no long-range translational sym-
metry. Unlike the real network, however, the
tree-like Bethe lattice contains no closed rings of
bonds, and this greatly simplifies the calculation of
elementary excitations.

Vibrational calculations generally involve two
kinds of forces: central (or bond-length restoring)
and noncentral (or intrinsic angle restoring) forces.
Sen and Thorpe’ have shown that vibrations on the
AX, tetrahedral Bethe lattice are easily calculated
when the noncentral forces are set to zero. In re-
cent years, their central-forces-only approach has
been exploited to investigate selection rules,’~!! and
then generalized to cover several different topolo-
gies.'»13 However, the central-forces-only model
fails completely at low (and intermediate) vibra-
tional energies, since it drives the acoustic (and
rocking) modes to zero frequency” !!; it occasional-
ly causes serious error even at high frequencies.!?

The inclusion of noncentral forces in Bethe lattice
calculations has been difficult* because it has re-
quired specification of the exact positions of atoms
on successive ‘‘branches’ of the tree-like lattice.
This greatly complicates the mathematics and re-
quires a knowledge of intermediate range order in-
cluding dihedral angles ¢; that is not available for
any real amorphous solid.'* We circumvent this
problem by performing an analytical average of the
dynamics over a random distribution of the dihedral
angles at the successive branches.

Consider the local geometry for an 4X, glass de-
picted in Fig. 1, where every atom of type 4 is at
the center of a tetrahedron of X atoms. The rela-
tive position of two neighboring tetrahedra is deter-
mined by the intertetrahedral angle # and the di-
hedral angle ¢. Disorder in real glasses, like SiO,,
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is associated with variations in both angles, although
the typical spread in ¢ is thought to be much larger
than in 0.!* To approximate this, we take 6 to have
a single value (its most probable one) and assume ¢
to be uniformly distributed!® over the range —r
< ¢=<=w. More specifically, we will develop a
solution for arbitrary 0, on the assumption that the
particular value of ¢ at a given pair of bonds is uni-
formly distributed and independent of the value of
¢ at any other pair of bonds: In other words, the
{¢,} are random and uncorrelated.

The nature of our solution is shown schematically
in Fig. 2, where the cones represent averaged mean
fields due to the rest of the lattice. Note that every
A atom is now on the average at a site of perfect
tetrahedral symmetry, the pair of bonds arriving at
any X atom still make an angle 0, and all restoring
force fields are cylindrically symmetric about each
A-X bond. This means that the network looks iso-
tropic to the 4 atom through any one of its bonds,
as one expects in real life— on the average.

FIG. 1. The local geometry of a 4-2 connected
tetrahedral A4X, glass, like v-SiO,. The ‘‘inter-
tetrahedral’’ angle is # and the ‘‘dihedral’’ angle is ¢.
For any particular value of ¢, the 4 atom at the origin
sees an anisotropic mechanical impedance at the bridging
X atom.
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and is independent of ¢. Also,
Ai=mo*+D,;+®"'0"'D,00, (5)

FIG. 2. The nature of our ¢-averaged solution to vi-
brations on the Bethe lattice. Each A4 atom is on the aver-
age at a position of tetrahedral symmetry; the restoring
force field at an X atom is cylindrically symmetrical about
the 4-X bond (although its strength depends on 6).
The rest of the network looks isotropic to the A atom
through any one of its 4 -X bonds.

We treat dynamics on the Bethe lattice using the
Born Hamiltonian.!~”:

Vij:“_zé{[ﬁ(;)—a(j)lé,-j}z
+§[a(i)—a<j)12. M

Here, U (/) is the displacement of the atom at site /
from its equilibrium_position RO(I) 5, j iS a unit
vector along Ro(i) —Ro(j) between nearest neigh-
bors, and o and B are the central and noncentral
force constants, respectively. The Born noncentral
force is a two-body force which Laughlin and Joan-
nopoluos* have demonstrated can accurately simu-
late the more realistic Keating three-body noncen-
tral force (except at the lowest frequencies).

The displacement-displacement Green’s function
for the atom with mass M at position 0 in Fig. 1,
can be written in matrix notation as

4
Goo=[Mw?— 3 (K))17, (6))

i=1

where o is the vibrational frequency and the (...)
means an unweighted average over ¢. If, as in Fig. 1,
the bond from 0 to 1 is along the z axis, then (after
much algebraic manipulation!®) the ¢-averaged
self-energy due to that bond is found to be

(K1) ==D+D{A7 )D,+(D{T}). (3)
In this expression,

-8 0 0
D=0 -8 0 4)
0 0 —a

is the interaction matrix between atoms 0 and 1,

where m is the mass of the bridging X atom and ©®
and ® are rotation matrices (by angles 6 and ¢,
respectively) that create the geometry of Fig. 1
from an arrangement where the two neighboring
tetrahedra coincide. And finally

Dfff =D A7 "o~ '@~ D, (6)

while the transfer matrix 7'; is defined as in Ref. 5
by

T1Go=Gor @)

where G, is the correlation between atoms 0 and 4
(through the bridging atom 1 in Fig. 1). Note that
Ay, f.and T, are dependent on 6 and ¢ and are
not dlagonal Nevertheless, it is found that the ¢-
averaged (A7 '), (DfT,), and all (K;) have the
same diagonal form as D;. Their elements can then
be obtained by a simple iterative procedure!® involv-
ing only scalar equations. Having determined the
(K;) one can calculate all the remaining elements
of the full Green’s function G. !¢

To illustrate the use and accuracy of the theory,
we will apply it to vitreous SiO, for which accurate
infrared,'”!'® Raman,!” and inelastic neutron scat-
tering spectra!! have been published.

The total vibrational density of states (VDOS)
per AX, unit is given by

p(m) = — (20)/377) Im[M(TrGoo) +2m (Trgu)],
(8)

where g;; is the autocorrelation at an oxygen site,
easily derived!® from the results already deter-
mined. Results for v-SiO, are shown in Fig. 3(a)
for M=28 amu, m=16 amu, 6=154°, a=507
N/m, and 8=78 N/m.

The polarized portion of the Raman response can
be approximated!? by

1P (o) ~ (—w)Im Y, JviG,,(i)vl, (9
iWJ mv

where vL is the w-Cartesian component of the sum
of all unit vectors along each bond arriving to site /.
This expression involves infinite summations which
lead to incorrect results on the Bethe lattice because
the number of distant sites is unphysically large.!®
On the basis that disorder ‘‘screens’’ longer range
correlations in the real glass (and to avoid false
response from the distance sites) we here restrict
such summations to the 8 bonds associated with a
five-atom AX, cluster. The results for the parame-
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FIG. 3. (a) The theoretical density of states and (b)
the calculated polarized Raman response for v-SiO,, us-
ing 6=154°, =507 N/m, and =78 N/m. These
parameters make an optimum fit of (b) to the broad
features of (c) the experimental response. The two
unpredicted sharp features in (c) are due to defects in the
real glass structure (Ref. 14).

ters given earlier are shown in Fig. 3(b). Al values
of the 8, a, B parameter space were searched in or-
der to achieve a ‘‘best fit”’ to the Raman data,!’
shown in Fig. 3(c). The parameters cited are those
which best fitted the central frequencies of the broad
experimental lines at 420 and 820 cm ™! and the
width of the 420 cm ™! line. The vlaues of « and 8
are close to those deduced by other means.”!! The
value of §=154° is remarkably close to the latest
diffraction estimate?® of 152°.

The overall shape of the Raman spectrum is
reproduced rather well throughout the intermediate
frequency range of Fig. 3(b) (100-800 cm™!).
That the relative strength of the broad bands at 420
and 820 cm ™! is approximately correct suggests that
our truncation of Eq. (9) is a useful approximation.
[This relative strength is slightly better when we in-
clude a second shell of bonds in Eq. (9).] Else-
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where!'® we will show a significant reduction of the
remaining differences, obtained by (1) averaging
over a realistic distribution of 6, and (2) adding a
small imaginary component to the frequency o (to
correct for the known tendency of the Bethe lattice
to produce overly narrow bands?®). These two re-
finements smooth the extra ‘‘bumps’ in the
theoretical spectra, and produce near-perfect agree-
ment!® of our VDOS with those of the large-cluster
calculationas of Bell and co-workers.?2! Our results
(and those of the large-cluster calculations) are ex-
pected to be less accurate at low frequencies
(<100 cm™') because of certain deficiencies of
the Born B forces*”!! and at high frequencies
(> 800 cm™1!) because of the neglect of Coulomb
forces.> 1117

The sharp peaks at 495 and 606 cm ! in the Ra-
man data are not reproduced by the theory, because
they arise from ‘‘defects’” known to exist in the
glass.'* These ‘‘defects’’ may actually be regular
rings embedded in the otherwise disordered glass
structure,'* and the present ¢-averaged Bethe lat-
tice is being used to model the dynamics of such
rings.

Because the scalar iterative calculations leading to
Figs. 3(a) and 3(b) are so efficient, it has proved
economical for us to investigate the vibrational sig-
natures of numerous broken bond, wrong bond,
and regular ring defects in v-Si0,. We have also
been able to extend the ¢-averaged Bethe-lattice
technique to model amorphous materials having
other network topologies, such as those listed in
Refs. 13 and 14. The technique is powerful.
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