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Laser with a Fluctuating Pump: Intensity Correlations of a Dye Laser
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A new, first-principles derivation of the equations for a quantized single-mode laser field
pumped by a semiclassical stochastic field in a four-level molecular pumping scheme is
presented. Computer simulations are used to generate fits to measured correlation functions
for a single-mode dye laser.
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Striking differences in the noise properties of dye
lasers as compared to helium-neon lasers were re-
cently revealed in measurements of the photon
statistics and intensity correlation functions of a
single-mode dye laser, performed by Kaminishi
et al. ' These measurements, and subsequent theo-
retical analyses, 2 4 have shown the importance of
incorporating fluctuations in the pump source. The
inclusion of pump fluctuations has been shown to
introduce vastly different behavior of the laser out-
put from what would be expected from the conven-
tional quantum theory of the laser. 5 9 The inade-
quacy of the theoretical approaches2 4 taken till now
arises from the ad hoc inclusion of noise terms in
the semiclassical equations of motion for the laser
intensity. A consistent, comprehensive theory is
clearly required to understand the correct form of
the noise sources, and to derive their effects on the
intensity fluctuations of the laser. It is the purpose
of this note to report a new, first-principles theory
for a laser pumped by a stochastic source.

Kaminishi et al. ' attempted to apply Risken's
theory7 8 for single-mode, conventional lasers near
threshold to their measurements on the dye laser.
The theory is a Langevin approach to laser noise,
governed by the Lamb semiclassical equation en-
hanced with an additive noise source:

E= [a —A iEi']E+((t)
in which E is the complex amplitude of the laser
field, a and A are the pump parameter and satura-
tion coefficient for the laser medium, and g(t) is a
Gaussian, white-noise source. Since the Risken
theory does not explain the measured variations of
the relative intensity fluctuations [ ((b,I)2) /(I) 2]

with pumping, or the observed correlation func-
tions [k(r) = (IsI(t)b, I(t+~))/(I)2], Kaminishi
et al. proposed that the pump parameter was not a
constant but a fluctuating quantity. Their efforts
were confined to fitting the ((b, I)2)/(I)2 vs a
curve.

Graham, Hohnerbach, and Schenzle2 pursued

E = [ao —A IEI']E+E((t) (3)

is no longer analytically solvable. A simulation of
(3) with a stochastic pump parameter a was per-
formed by Dixit and Sahni. 4 They achieved some
success in explaining the observed data of Kami-
nishi et al. ' and Short, Mandel, and Roy3 by using
colored noise for the pump. The results of our
new, first-principles theory for lasers with fluctuat-
ing pumps unambiguously determines the location
of noise terms as well as their detailed structure.
Moreover, the theory contains spontaneous-emis-
sion contributions.

We use a density-matrix description of the active
molecular energy levels and the quantum state of
the laser field. The pump field is treated semiclassi-
cally. The active molecule is treated as a four-level
system, with decay rates y».

The density-matrix equation of motion is

tli Bp/ "tJt = [H, p], (4)

where p is the density matrix for both the molecu-
lar levels and the photon states and H is the total

this idea further by assuming

a = ao+ g(t),

where ao is an average pump parameter. ((t) was
taken to be Gaussian, white noise. Neglecting the
additive spontaneous-emission noise term, and the
fact that A should also contain pump fluctuations,
they obtained analytic solutions'o "of the Langevin
equation with multiplicative noise. '2 They fitted
the data concerning the relative intensity fluctua-
tions as well as one correlation function of the dye-
laser intensity. Unfortunately, this analysis did not
fit some unpublished data, for other operating
points of the laser, as was pointed out by Short,
Mandel, and Roy in a more recent paper, who also
suggested the use of colored noise.

With colored noise, the equation
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Hamiltonian,

40 i1 cll23a a+ X[i)e, (i ( +p, cos(~„t)[14)E,(t) (1I + I1)E~'(t) (4I]

+g (a +a ) ( i3) (2i + i2) (3i) +Hdeglly

with H&„,„denoting Hamiltonians for decays.
The first term is the Hamiltonian for the quantized single-mode laser field with frequency cu23. The second

term is the Hamiltonian for the molecular energy levels with energy e;. The third term is for the pump field
E~(t) interacting resonantly with levels 1 and 4. The electric dipole coupling strength is p, . E~(t) is a possi-
bly stochastic, semiclassical field, allowing for noisy fluctuations in the pump laser source. The fourth term
is for the interaction between the lasing energy levels (2 and 3) and the quantized laser field (single mode).
The coupling coefficient is g. The remaining terms are stochastic Hamiltonians representing nonradiative
transitions and cavity decay.

The method devised by Fox'2 has been used to obtain the equations of motion for the total system
density-matrix elements. A contraction of this description is now possible which utilizes adiabatic elimina-
tion of off-diagonal molecular level matrix elements. We obtain, with p = exp((i/t t) [Ho, ]]p and p, =p/tt,
g=g/&,

Bp„/Bt = —p, 'J ds exp[ —y1, (t s)/2]—[E,(t)E"(s) + E'(t)E (s) ]p11(s)

+ (y12P22+ y13P33) +~P11

~P22/d t y12P22+ y23P33

+g2J dsexp[ —y23(t —s)/2][a p33(s)a —p22a a —a ap22(s) —a p33(s)a]+&p22,

Bp33/Bt = —(y13+ y23)p33+ p,
&

ds exp[ —y14(t —s)/2] [E~(t)E~"(s) + E"(t)E (s) ]p11($)

pf+ g „ds exp[ —y23(t —s)/2][ap22a —p33(s)aa —aa p33(s)+ ap22(s)a ]+&p33.

The equation for the field density matrix (0.—=p»+ p22+ p33) is

BFr/Bt=&0. +g J dsexp[ —y23(t —s)/2][2a p33(s)a —p33(s)aa —aa p33(s)

+2ap22($)a —p22($)a a —a p22($)].

Here &represents the cavity decay with

~= X„(—nX~n) (n) ~n) (n ~+(n+1)A. ~n) (n+1~ ~n+1) (n ~),

where ~n) is the n-photon state of the laser field and A. is the cavity decay rate. Taking photon state matrix
elements of these equations and performing the trace of them yields, after adiabatic elimination of the popu-
lation in level 2, a much reduced description given by the pair of equations

N3 = —(y13+ y23)N3+ p, ds exp[ —y14(t —s)/2] [E~(t)E'(s) + E~'(t) E~(s) ) [N N3(s)l-
pf—2g I ds exp[ —y23(t —s)/2]N3(s) [I(s) +1],

ptI= —AI+ 2g „dsexp[ —. y23(t —s)/2]N3(s) [1(s)+ 1), (12)

where we have defined X„N(n ~p33 ~ n) —= N3 and X„(n ~
a a p ( n) = I in which I is the laser intensity and N3

is the population of the excited lasing level of the molecule.
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N3 G(t) —) '(t)N3 BN3(l+ 1),

I= —XI + BN3 (I+ 1).

(i3)

(i4)

in which

If the pump field fluctuations are very fast, one
may make the instantaneous approximation, ' and
replace the memory integrals by instantaneous
terms, to obtain

the three intensity correlation functions of which
two are shown here [Figs. 1(a) and 1(b)]. These
were experimentally measured for different operat-
ing points of a single-mode dye laser. 3 The fits
have been obtained by varying the average pump
intensity and the coefficient B, i.e. , three curves have
been fitted by varying two parameters T.he time step
size taken was 1 ns and 300 realizations of 40000
steps each were computed. Other parameters are

leads to

k'+ B(I+ 1)
(15)

G(t) = (4p, '/y„)NI, (t),

(y13+ 'y23) + (4P/y1'4)lp(t)

B= 2g'/y23

I~(t) = [Ito2+$(t)]2 is the quantity which may
fluctuate. I~o is the average pump intensity; ((t) is
Gaussian, white noise. Adiabatic elimination of N3
by z

O
o.

LLJ

K
Ka

TIME SCALE IN MI CROSECONDS

(a)

) (t)+B(l+i) (i6)

which represents the strong-signal version of Eq.
(3). We should note several important differences
at this point. Both G(t) and A. '(t) contain I~(t),
which is stochastic. The 1 in the I+1 terms is a
result of including spontaneous emission in a sys-
tematic manner in our equations. If one contem-
plates using colored noise for Ip(t), one should ac-
tually use Eqs. (11) and (12) with the correct form
of the memory integrals. Moreover, the decay rate

yt4 must be compared with the decay rate of
the autocorrelation function for E~ to determine
which dominates the value of the integral over the
past in Eq. (11).

From a stochastic point of view, Eqs. (13) and
(14) are more easily studied than Eq. (16), because
the pump fluctuations enter both G and A.

' in Eq.
(i6).

We have carried out computer simulations of
Eqs. (11) and (12) with the assumption that the
fluctuations of the multimode pump laser (which
may have well over 50 axial modes) are very fast
compared to other time scales of the molecular
processes. Correlation functions A. (7) = (b, l(t)
xhl(t+~))/(I)2 have been obtained from the
simulations, in which the pump field is assumed to
contain Gaussian, white noise. A large number of
parameters occur in Eqs. (11) and (12). We have
made plausible estimates for the parameters of the
dye molecule (Rhodamine 6G) and obtained fits for
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FIG. 1. A(7 ) vs 7.
S. olid line, exp. erimental data from

Ref. 3; asterisks, simulation results. The error bars are
estimated from the scatter of the experimental points and
the results of the simulation for different realizations.
(a) X(0),„,=0.98; 1~0=2.0&&10', B=0.0033 sec '. (b)
h. (0),„„=0.57; I~a= 2.4x 10; B= 0.0037 sec '. The
other parameters are common to both figures: 8A/
y14=10 sec ', y14=1.4x10 sec ', ~=Sx10 sec
Q=7.0x102, N=10'0 molecules, yi3+yq3=107 sec
single integration time step = 10 sec.
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stated in the figure captions, and the estimated errors in the experimental and simulation results are shown
in the figures. No "subtraction" procedures have been used.

It is also easy to see the effect of the pump fluctuations on the quantum mechanical equations of motion
for the reduced field density matrix. On taking (n ~ ~n) matrix elements of Eqs. (6)—(9), neglecting the
population of level 2, and adiabatically eliminating p33(n) ( —= (n ~ p33~ n) ), we obtain

o (n) = —n)to. (n)+ (n+1))io.(n+ I)

Here

g nG(t)(r(n —1)
Y23( Y13+ Y23) + g~ / Y23( Y13+ Y23)

(n+1) G(t)tr(n)
1+g (n+ I)/ g Y23(Yi3+ Y23)

(17)

pt
G (t) = p. „ds exp[7 i4(t —s)/2] [E~(t)E~'(s) + E~"(t)E~(s) ].

This equation has nearly the same form as the
Scully-Lamb master equation. '"

The theory presented here provides a compre-
hensive, consistent approach which considers from
first principles the inclusion of pump noise in a
laser. The details of this theory as well as exten-
sions will be published in a forthcoming paper. '3
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