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Chaotic Phases and Magnetic Order in a Convective Fluid
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Studies of different types of transitions to chaos in Rayleigh-Benard convection in a
cylindrical container of mercury subjected to a horizontal magnetic field are reported. As the
field is increased, structural changes of the spatial pattern are connected with different time-
dependent behaviors and routes to chaos.

PACS numbers: 47.25.Qv, 47.20.+ m

A problem of interest is the onset of chaos in

physical systems with many degrees of freedom,
and an important question to investigate is whether
and how dynamical system theory can be extended
to that case. We report here an experimental inves-
tigation about the influence of the number of un-
stable modes on the transition to chaos in a layer of
mercury heated from below and subjected to a hor-
izontal magnetic field. For small magnetic fields
(B & 1000 G) a random spatial pattern sets in at
the convection onset and an abrupt transition to
time-dependent chaotic behavior is observed. For
large magnetic fields (B & 3000 6) the convective
flow consists of rolls parallel to the magnetic field
axis, and the route to chaos involves a limit cycle
that undergoes subharmonic bifurcations. In the
intermediate range of magnetic field amplitude,
several bands of periodic states exist within the
chaotic region.

Chaotic regimes just above the onset of convec-
tion have been observed in experiments with small
Prandtl number fluids, liquid helium' (P —1) and
mercury (P = 0.025), with large aspect-ratio con-
tainers. (The aspect ratio is I' = L/d where l. is the
characteristic horizontal scale and d the fluid layer
height. ) Qualitative differences in the sequence of
events leading to chaos have been observed by de-
creasing the aspect ratio. ' Experiments with mer-
cury have shown that the container shape plays
also an essential role: in parallelepiped containers
of dimensions 50x30&&4.8 mm and 32&32X5.3
mm a periodic regime follows a stationary one as
the Rayleigh number is increased, whereas for a
smaller aspect ratio but cylindrical container of 18
mm radius and 6 mm height, a chaotic time depen-
dence is observed just above the onset of convec-
tion.

We present here the effect of a horizontal mag-
netic field on convective regimes in this container.
In our experimental setup, described elsewhere,
we have obtained local temperature measurements
with a negative-temperature-coefficient thermistor,
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FIG. 1. Nature of the time-dependent states as a func-

tion of the Rayleigh and Chandrasekhar numbers. The
dashed curves indicate a transition between two different
regimes. R~(Q) corresponds to the onset of time-
dependent flow. Different time dependences observed
are damped transient oscillations (plusses), sustained os-
cillations (open circles), or chaotic time dependence
(closed circles). For R =R&(Q), the heat fiuxes with
and without magnetic field join together (triangles).
Above the dash-dotted line Qp(R), the time dependence
is periodic (oscillation between simple patterns).

and convective pattern visualization with a layer of
cholesteric liquid crystal.

The different flow regimes are plotted in Fig. 1,
in a two-parameter space R, 0. R is the Rayleigh
number, R = gnd35T/vK, where g is the accelera-
tion of gravity, o. is the isobaric thermal expansion
coefficient, v is the kinematic viscosity, E is the
heat diffusivity, and 5 T is the temperature differ-
ence across the fluid layer. The Chandrasekhar
number 0 measures the ratio between the anisotro-
pic viscosity due to the magnetic field 8, and the
kinematic viscosity; 0 = oBd /pv, -where o- is the
electrical conductivity and p the fluid density.
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In the absence of magnetic field (Q =0), above
the critical Rayleigh number R, for the convection
onset, the convective pattern consists of hot as-
cending and cold descending fluid regions, random-
ly distributed in space, and moving on a slow time
scale compared with the vertical heat diffusion
characteristic time (d /E = 10 sec). A chaotic time
dependence with a broadband frequency spectrum
is associated with these motions.

When a horizontal magnetic field is applied, the
convective pattern takes the form of rolls parallel to
the field axis, and the flow becomes stationary.
The field inhibits convective modes with velocity
variation along its axis, but does not affect rolls
parallel to its axis. Consequently the critical Ray-
leigh number R, for the onset of convection is un-
changed (see Fig. 2). For R & R„ the heat flux in-
itial slope changes discontinuously from the slope
without magnetic field [curve labeled (1) in Fig. 2]
to the slope with magnetic field [curve labeled (2)].
This is in agreement with nonlinear perturbation
theory at the convection onset, demonstrating that
parallel rolls are associated with the highest convec-
tive heat transport when the top and bottom boun-
daries have a much higher heat conductivity than
the fluid. For a given magnetic field (for instance

Q =1200 in Fig. 2), one follows the curve (2) at
convection onset and leaves it for R & R t(Q).
This corresponds to the first time dependence al-
ways associated with three-dimensional patterns.
With increasing Rayleigh number different time-
dependent regimes (periodic or chaotic) are ob-
served. They depend on the Chandrasekhar
number and are associated with different spatial
patterns we shall describe below. When the Ray-
leigh number reaches the value labeled Rz(Q) in

Fig. 1, the heat fluxes with and without magnetic
field become equal (see Fig. 2, Q = 300 and 1200);
the spatial order is completely lost.

Let us now describe the scenario leading to chaos
at high Chandrasekhar number. In the diagram of
Fig. 1 we follow the horizontal line Q =2200. For
R = R ~

= 2.3R„ the stationary parallel-rolls state
loses its stability, and the temperature measure-
ments show the occurrence of a periodic state [Fig.
3(b)]. This transition has no hysteresis and the
limit cycle appears for R =R

~ with finite amplitude
and vanishing frequency. More precisely, the por-
tion of the limit cycle designated by 1 increases in-
definitely when R R

&
from above. This transi-

tion corresponds to a saddle-node bifurcation. We
have sketched in Fig. 3(a) the spatial patterns that
correspond to the temperature recording of Fig.
3(b). The system oscillates between two parallel-
rolls patterns, with hot (cold) fluid ascending (des-
cending) in the center of the container. The transi-
tions between these states involve three-
dimensional patterns, generated after the tilting of
the rolls, and corresponding to the peaks of the
temperature recording. For R & R

&
subharmonic

bifurcations occur (R/R, = 3.95 and 4.05) and the
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FIG. 2. Heat flux characterized by the Nusselt
number vs the Rayleigh number, for different values of
the Chandrasekhar number.

FIG. 3. (a) Sketches of convective patterns associated
with the periodic state for Q = 2200. The shaded regions
correspond to hot ascending fluid visualized by a layer of
cholesteric liquid crystal placed under the container top
boundary made of sapphire. (b) Direct temperature
recording for 0 = 2200 associated with the patterns of
(a).
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time dependence becomes chaotic for R =4.4R„
where noise, exponentially decreasing with frequen-
cy, appears in the power spectrum.

In the intermediate range of Chandrasekhar
number (300 & Q & 2000), other types of transi-
tion to chaos are observed. For R & R t(Q), a
small step in the heating current causes a damped
transient osci11ation with a characteristic period
To ——10d2/E. As the Rayleigh number is increased
above R t(Q), let us describe two characteristic
behaviors for Q = 300 and Q = 1200.

For Q =300 and R =R t=1.3R„a small-ampli-
tude nearly sinusoidal limit cycle is sustained. This
transition is a supercritical Hopf bifurcation. Our

visualization setup shows that it corresponds to a
transverse oscillation of the parallel rolls. As R is
increased Fourier analysis shows the noise ampli-
tude increases in the temperature frequency spec-
trum. However, oscillating rolls remain visible in-
dicating that a large amount of the flow kinetic en-
ergy is contained in a small spatial wave-number
range. The spatial pattern order is destroyed only at
higher Rayleigh number.

For higher Chandrasekhar numbers (Q = 1200),
the evolution to turbulence involves an apparently
more complex process, with alternation of chaotic
and periodic bands. For R & Rt(Q) =1.8R, the
damped oscillation described above is observed.
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FIG. 4. Frequency spectrum of the temperature for g = 1200. During the alternation of chaotic (a), (d), and periodic
(b), (f) regimes, the limit cycle of frequency f is preserved and undergoes subharmonic bifurcations f/2 and f/4.
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Then a sharp transition to chaos occurs for
R =R t(Q), and Fourier analysis shows a broad-
band frequency spectrum [Fig. 4(a)]. However, as
the Rayleigh number is increased, the noise de-
creases and concomitantly a peak at frequency
f= 0.1E/d2 emerges [Fig. 4(b)]. It corresponds to
the transverse oscillation of the rolls. Then a new
transition to chaos occurs after the appearance of a
second mode of frequency much smaller than the
first one [Figs. 4(c) and 4(d)]. A further increase
in Rayleigh number shows laminarization again, but
this time concomitant with the appearance of the
frequency f/2 and then f/4 [Figs. 4(e) and 4(f)].
These two relaminarizations correspond to a de-
crease of the convective heat flux with increasing R
(see Fig. 2, Q =1200) and therefore to structural
changes in the spatial pattern.

In this experiment the magnetic field is a control
parameter for the number of degrees of freedom of
the system, and determines the nature of the transi-
tion to chaos as the Rayleigh number is increased.
In the range 0 & Q & 5000, the transition to time
dependence always involves three-dimensional pat-
terns. This is known for higher Prandtl number
fluids and is associated with the skewed-varicose
instability, but some~hat surprising with mercury
when a large magnetic field two-dimensionalizes the
motions. We have observed two kinds of periodic
states, rather similar to those recently reported in
experiments with liquid helium. The diagram of
Fig. 1 can be understood in terms of a phase dia-
gram for our physical system, ~here each curve
represents a transition where spatial or temporal or-
der is lost. The curve Rt(Q) corresponds to the

onset of time dependence. For all parameter space
above Qo(R), this time dependence involves the
interaction of only a few spatial modes, and the
transition to chaos has the same characteristics as in
low-dimensional systems. For Q & Qp(R) and
R & R2(g) the transition to chaos occurs concomi-
tantly with structural changes of the flow manifest-
ed in the Nusselt number measurements. For
R &R2(g) the spatial order is completely lost.
This definition of the "turbulent" state frontier of
Fig. 1 is somewhat arbitrary, and spatial Fourier
spectra of velocity or temperature are necessary for
a more quantitative study of this regime.
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