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Semiclassical Approximation for the Nonrelativistic Coulomb Propagator
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An approximation to the Coulomb propagator, correct to fi~st order in l, is derived. This
function has the structure K =F(A., p„, v) exp[iS(h. , p„v)]„in terms of auxiliary variables
X, p„v introduced in the solution of the corresponding Hamilton-Jacobi equation.

PACS numbers: 31.15.+q, 03.65.Sq

A long-missing element in Feynman's path-
integral formulation of quantum mechanics' has
been the propagator for the Coulomb problem,
E( r t, r 2, t). Duru and Kleinert and other work-
ers have carried out the path integration for the hy-
drogenic problem but no explicit form for the prop-
agator has thereby resulted. In this note I will

derive an approximate form for the Coulomb prop-
agator by working with the time-dependent
Schrodinger equation rather than the path integral.
I note that a number of integral representations re-
lated to K have previously been given, as well as a
numerical solution for the corresponding statistical
density matrix. In earlier work, I studied the
asymptotic behavior of the Coulomb propagator. I
have, in addition, recently derived related propaga-
tors in the domain of Coulomb Sturmian eigen-
states.

Hostler and Pratt first discovered a closed form
for the time-independent Coulomb Green's func-
tion G( r t, r 2,E). The retarded (outgoing-wave)
solution can be written

G+( r, , r, ,E) = G+(xy, k)

g+ (x,y, k), (1)
1 t) 8

m x —y x y

with

g+ (x,y, k) = (ik) 'I'(1 —i v)

)&M, '„'(—iky) W „'(—ikx), (2)

in terms of the following variables and parameters:

r~, r2, and r~2. This reduction is a consequence of
the SO(4) or SO(3,1) dynamical symmetry of the
Coulomb problem, connected as well with an addi-
tional constant of the motion —the Runge-Lenz
vector. "

The Coulomb propagator is the solution of the
time-dependent Schrodinger equation

it +——'7, +—K( r, , r 2, t) =0a t', z

t)t 2 rt
(4)

subject to the initial condition

K ( r t, r 2, 0) =5( r t
—r 2).

I employ atomic units, h=e=m=1, but tem-
porarily retain t for use as an expansion parameter.
Since K and 6 are related by a Fourier transform, '

G+= ;jf Ke'Etdt, — (6)
0

we can conclude that the propagator likewise
depends on r

&
and r 2 only through the combina-

tions x and y. I assume therefore that K
=E (x,y, t).

In the limit as z 0, K reduces to the free-
particle propagator

K (x,y, t) = (27rit) e((x-y) (8t

ir /2t= (27rit) e

As shown by Feynman' and others, ' for Hamil-
tonians expressible as quadratic forms in general-
ized coordinates and momenta, the propagator has
the structure

x =r$+r2+r$2, y =—r$+r2 —r]2,

E=tt k /2m, v=z/kao, Imk & 0.

M and 8' are Whittaker functions as defined by
Buchholz. ' Remarkably, the Coulomb Green's
function depends on just the two combinations of
variables, x and y, whereas rotational symmetry
alone would imply a function of three variables, say

K(r t, r2, t) =F(t)exp[iS(r t, r2, t)/t] (g)

in which S is the classical action, the solution of the
Hamilton-Jacobi equation. For a single particle,

r 2, t

S(rt, r2, t)—= JI 1.(r, r)dt (9)

along a classically allowed trajectory. The modulat-
ing function I' depends on t alone, determined such
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=F( r t, r z, t)exp[iS( r t, r 2, t)/it] (10)

with the preexponential factor now free to contain
dependence on r i and r 2 as well as t. Substituting
(10) into (4) we obtain

—[S,+ ,
' (V,S )' -z/r, ]F-

+i t [Fr + '7 tF V tS + ,
' F'vt t—S]

that E satisfies the appropriate time-dependent
Schrodinger equation with the initial condition (5).

For nonharmonic potentials, including the
Coulomb problem, the simple structure (8) is no
longer exact. I propose to represent the Coulomb
propagator in the slightly more general form

K(r&, rzt)

defined A. , p„and v are real for positive-energy
Coulomb states and pure imaginary for bound
states.

The first-order equation (13), expressed in terms
of the variables x, y, and t, works out to be

—,
' F, + 2S„F„+S~F + —(S„+Sy )F

+ (S„—Sy)F =0 (16)
1

x

plus the analog with x and y interchanged. For fur-
ther progress, we must reexpress Eq. (16) in terms
of the variables X, p„v. The requisite elements of
the Jacobian matrix are enumerated in Table I.
The derivatives of S thus work out to be

S„=(2v) ' coth)t, Sy ———(2v) ' cothp„(17)

and

S, + —,
' (VtS) —z/rt = 0, (12)

F, +V'iF. V'iS+ —,FV iS =0. (13)

I solved Eq. (12), the Hamilton-Jacobi equation
for the Coulomb problem, some time ago. '5 The
result can be expressed as

+ —,'A 2V'2iF = 0.

Within the semiclassical approximation, ' the
term in t is neglected while S and F are determined
from the segments of Eq. (11) to zeroth and first
order inh, viz.

S 1

16v sinh A. cosh'.

2sinh A, coshp,
J()t, p, )

where

J(A., p, ) —= coshp, j(h. ) —cosh' j(p, ),

j()t) =sinh A+3sinhk —3)tcoshk.

The following identities are readily verified:

coshkj'(A. ) = sinhhj (A. ) + 2 sinh")t

(18)

(20)

S = v [sinh()t —p, ) cosh() + p, )

+ 3()t —p, ) ] (14)

and

cosh)t = sinhX J (A. , p, )+ 2 sinh )t coshp, . (21)
J . . 4

in terms of the auxilliary variables A. , p„and v de-
fined such that

zx = 4v2 sinh2g,

zy =4v sinh p, ,

z't = 2v'[sinh(A. —p, ) cosh(X+ p, ) —(& —
p ) ].

Consistent with x ~y ~ 0, we have X ~ p, ~ 0. As

r 1

1S
3 2

—cothA.
16v' sinh')t

(22)

Reduction of Eq. (16) to an ordinary differential

With use of (21), the second derivative (18) simpli-
fies to

TABLE I. Elements of the Jacobian matrix (I(X, p„, v)/II(xy, t). Abbreviations are as
follows: S~=sinhk, C~=coshk, S„=sinhp, Cv=coshp, ', j(X)=Sr, +3S„—3kC„;
J (Z, p ) = C~ (Z) —C~ (p ); T(Z, p ) = (S~C), —Z) —(SvC„p). —

(3C„T+ 2S„' )/8v2S~J
SgS„/4v2J
—SiC„/4v J

—SASF/4v J
(3CgT —2Sg )/8v SvJ

CiS~/4v J

—SAC„/2v J
—CASE/2v J
CgCJ2v J
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1 t) t) 1——+2S„
2 IJt "

t)& &v sinh A.

(23)

With use of (22) and (23), Eq. (16) simplifies to

equation follows from a remarkable operator rela-
tion:

In applications to be discussed elsewhere,
Coulomb propagators can be used to construct
many-electron Green's functions for computation
of atomic and molecular eigenvalue spectra. '

1 ~ 1 cosh'.
2 J 2 sinhX

cosh()t —p, )
sinh(X —p, )

(24)

The solution is

F(X, p„v) = [sinh(A, —p, ) ]

x [sinh)t J (X, p, ) ]

x (function of p„v). (25)

E( r t, r 2, t) = F(X, p„v)e' (27)

with S(X, p„v) given by (14). This approaches the
free-particle propagator as A. , p, ~, corresponding
to any of the limits z 0, x,y ~, or t 0. The
semiclassical propagator correctly reduces to a delta
function in accordance with (5).

The symmetry between X and p„ together with the
condition that F approach its free-particle analog as
z 0 [cf. Eq (7)]., implies further that

F ()t, p„v) = —' (z2/4mt') 3 zv

x [sinh(A. —p, ) ]

x[sinh)tsinhp, J(A., p, )] ' '. (26)

We arrive thereby at the semiclassical approxima-
tion to the Coulomb propagator;
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