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In the Gell-Mann —Levy o- model, although the soliton by itself is unstable to collapse, the
author finds a stable self-consistent solution of a valence (single-particle) nucleon bound
state in a soliton (hedgehog) configuration of the meson fields. This solution has baryon
number 2 and in the neglect of quantum fluctuations its energy is found to be less than
m& = g (o.) ( =gf„), the mass of the usual plane-wave nucleon.

PACS numbers: 11.10.Lm, 11.30.Qc, 11.30.Rd

The o. model' is a realization of pion-nucleon
physics which reproduces the usual current-algebra
results. Chiral symmetry is spontaneously broken
by the o. field acquiring a vacuum expectation value
(VEV) which generates a mass for the nucleon
through the Yukawa coupling. In the lowest order,
treating the meson fields as classical (VEV) and the
nucleon at the single-particle level, we find a
plane-wave spectrum for the nucleon with a mass
given by g(o.), where (o.) =f„=93 MeV, the
pion decay constant, and (m ) = 0 in accordance
with the partial conservation of axial-vector current.
In these considerations, (o.), is, of course, a con-
stant over all space.

Here I examine the possibility of a nucleon
bound (localized) state arising from a vacuum ex-
pectation value for the meson fields which is space
dependent in the interior, but clearly finite energy
of these states requires that asymptotically
(o-) =f and (n) =0 as in the usual case. The
space variation of (o.) and (m) in the interior is
expected to act as a potential to trap the nucleon.

Such configurations of the o. and m. fields can car-
ry nontrivial topology. This was observed by
Skyrme2 years ago. Skyrme introduced an extra
term in the pure nonlinear (o. +m =f over all

space) meson Lagrangian and found a stable soliton
solution in the absence of nucleons. Further, he as-
sociated the topological charge of this configuration

with baryon number. This has been the subject of
much interest lately in the light of a paper by Gold-
stone and Wilczek who explicitly showed that the
topological charge can be identified with baryon
number. Baiachandran et al. ~ have constructed a
stable soliton in analogy with Skyrme and shown
that it carries topological baryon number 1. In addi-
tion they have constructed a bound state of a nu-
cleon in the soliton background with even baryon
number and exotic quantum numbers (spin, etc.).

I present here a solution in which the additional
term, L 1, introduced by Skyrme2 to stabilize the
soliton in the absence of fermions is not present.
Thus, the soliton by itself cannot exist. On the oth-
er hand, a self-consistent solution5 of the coupled
nucleon and solitonic boson fields is developed
which is stable and of the same topology as the soli-
ton. This localized (bound-state) solution has
baryon number 2 but a very different energy from
that of Ref. 4. In particular, it is found to have an
energy lower than the plane-wave single nucleon
(B= 1) Mtv = g (o.) . The consequence is ex-
traordinary —an extended topological object of
baryon number twice the ordinary nucleon but en-
ergy less than its mass is present at the semiclassical
level in the o. model.

The starting point is the chiral o--model Hamil-
tonian for classical time-independent pion and sig-
ma fields:

H=)I dsryt(cV p+gp[o+iyS(vr ~)]}alt
2 ~ 2

tj'r + — +) (~2+~2 —~02)2 —f m'~ .

The last term is the explicit symmetry-breaking term, in accordance with the partial conservation of axial-
vector current, tvhich vanishes in the Goldstone boson limit of the pion (m = 0). We work in the limit of
no quantum fluctuations, i.e., classical n and cr fields and single-particle Dirac nucleon fields.

Minimization of the meson part of the energy in the absence of the nucleon yields (o-) =f, (vr) = 0, and
o.o=f —m /)i. . This is to indicate that in the presence of even an infinitesimal symmetry-breaking term,
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the absolute minima is as above, (a.) = ao= + f„, and not (a.) = —a.o. I shall, from this point onwards,
adopt the m =0 limit, keeping a. =+f . The solution with a localized nucleon source must then satisfy the
boundary condition at spatial infinity a.(r ~) = +f .

The energy of the nucleon bound system in the presence of the space-dependent m and a. fields is obtained
by first solving the Dirac equation for the nucleon valence orbital:

[a p+gP[a+ iy, (m. r)]] ~n) = e„~n), (2)

where n designates the eigenvalue. Let eo be the ground state or lowest eigenvalue. The total ground-state
energy, E, is then given by the addition of the meson part:

E= e + d'r [-'(V a)'+-'(V ~)'+ ~(~'+ a' f')-'] (3)

The solution corresponds to E being stationary under independent variations of the a. and 7r fields given the
line boundary condition (~), =0, (a)„=+f.

It is known that in the presence of the pion-nucleon interaction it is not possible to have radial or spheri-
cally symmetric solutions which are eigenstates of the total angular momentum J,J„and isospin 7, v, . We
shall specialize to the so-called hedgehog6 7 solution which stipulates a pion field of the form m = m (r) (e,),
i.e., links isospin to space. It is, then, not surprising that J,j„and 7, 7, do not individually commute with
the Hamiltonian. However, I = J + ~/2 does commute and we can classify solutions as eigenstates of I .

The lowest-energy normalized eigenstate is then given by the wave t = 0, I= 0 and may be written in terms
of upper and lower components,

with ~v) = (I/J2) (~ t ) I
——,

'
) —

~ J ) ~+ —,
' ) ), where the arrows and

~

—', ) refer to spin and isospin, respective-

ly, and I~v) =0; also d3r[f2(r)+g (r)]=1.
From the field equations for the nucleon and meson fields it follows that [with p (r) =a(r)/f and-

X(r) =7r(r)/f ]

g(r)~ 0 as r~ 0; X(r) 0 as r~ 0,

For simplicity I shall impose the nonlinear constraint a. +~ = f2 or X ~ over all space. This is, of
course, true asymptotically (later, I shall show that this is reasonable).

We now make the choice q =cos8(r) and X=sin8(r) and cast the equation in a dimensionless form
in terms of x=gf r. Also, we switch to G(r)/r=g(r) and F(r)/r= f(r). The Dirac equation in matrix
form is then given by

cosH

ri„—x ' —sine cosH

where E= eo/ger and
~a

dx[cos8(F2+ G2) —2sin8FG —F(B„+x ')G+ G(6„—x ')F]
E(8)="

(F2+ G2) dx

The total energy is then given, in units of gf, by
f

=E+
2

— dx x2 +2sin 8 . (7)

Since the a and n fields are now expressed in terms
of a single parameter 8(r), we shall minimize the
total energy, E, with respect to 8(r), subject to the
foregoing boundary conditions, instead of solving
the two variational equations for a. and m. .

Note also that the meson part of the Hamiltonian
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or energy is exactly what follows from H~= ,
'f—

x fTr('7u '7u), where u =cos8+i (~ e, ) sin8.
H~, of course, is the Hamiltonian corresponding to
the Lagrangian 1.0 in Ref. 4. The addition to the
static meson Hamiltonian arising from the extra
term, L&,

4 needed to achieve a stable soliton in the
pure meson sector is quartic in u and is given by

0~2=, „~ d'x Tr[(h, u)u, (B~u)u ]'.
32e
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A numerical fit to Eo is found to have the form'

Eo = —0.94+ 3.16/X. (9)
This is reasonable is its Xdependence, X in some

sense being the width of the "potential well" seen
by the nucleon. However, there is the puzzling
feature that as we change X(g) to very large values
the energy can go through zero and become nega-
tive. This would seem to imply an instability or in-
consistency. However, the negative- and positive-
energy spectra are no longer symmetric in the pres-
ence of the pion field (e.g. , Coulomb field) and if
we follow the negative-energy states as the valence
bound-state energy goes negative, there is always a

gap between the lowest valence state and the
highest negative or sea state. There is no crossing
of valence and sea states. This indicates that the
system is not unstable to pair production. Also,
when the total energy E and not just Eo goes nega-
tive we have an essential instability in the theory
(see Ref. 7 where exactly similar considerations are
needed in a different context to bind quarks to give
a chiral soliton model for the nucleon).

We now solve analytically for the one-nucleon
bound state,

E
0 4

3.16 26.96 X
gro X g2

(10)

The function 0(x) must satisfy the following con-
ditions:

p = cosH = + 1, x
X=sin0=0, x
X=sin8=0, x 0.

The variation of 0 which gives rise to a minimum in
the energy furthermore has the form

0(x- 0) =m and H(x- ~) =27r.

A variation of 8( x) with the above properties is
performed to give the exact energy minimum. A
simple and not inaccurate parametrization of 0(x) is
as follows: 0 (x) rises linearly from m at x = 0 to 27r

at x=X and remains constant and equal to 2m

thereafter. X is then a size parameter for the sys-
tem. The meson energy can now be solved for
analytically. The single-particle valence-nucleon
bound-state energy is solved for numerically. We
then have

= E,+ (X/g') 4m( —,
' + m'/6). (8)

Minimizing with respect to X, we find X2=3.16g2/
26.96. This gives a value for the minimum of
E/gf = 0.91 and X = 3.6 for the usual plane-wave
nucleon mass M~ = gf = 938 MeV which gives
g = 10 for f = 93 MeV. Substituting these values,
we find E= 840 MeV and R =X/f g =0.7 fm.
Let me add that an exact variational procedure for
determining 0 (r) gives E —700 MeV.

Finally, in relaxing the nonlinear constraint of
o-z+m2= f', or more specifically, in going from
A. =~ to h. =8, there is hardly any change in the en-
ergy, showing the A. ~ Ansatz to be good. The
reason for this is that the system always likes to stay
on the continuous ring of minima given by mz

+ o- =f as one goes from the origin to infinity to
avoid the positive volume energy that arises in
departing from this.

I have shown that a bound nucleon in a hedgehog
configuration of the (m, o-) fields in the o.-model
chiral Lagrangian exists, with total energy less than
that of a free nucleon in the usual plane-wave
configuration m~= gf„=938 MeV. However, the
Dirac wave function is unusual, since it is not an
eigenfunction of spin and isospin. At the level of
expectation values we get a spin = 0 for line I= 0
state. I shall defer discussion on all but the baryon
numbers of the object.

The naive expectation of unit baryon number, B,
corresponding to a single bound nucleon is not
borne out, for it has been shown2 3 that baryon
number can arise out of the nontrivial topology of
the o. and m fields. Goldstone and Wilczek have
shown that fermion (baryon) number, in a theory
of nucleon-m-o. interactions which is precisely
mine, can arise from a hedgehog configuration of m

and o. fields by themselves, that is, in the absence
of any fermions in the system. But we know that in
the zero-nucleon sector the present meson Lagrangi-
an cannot support a soliton solution: it would
shrink to the origin as there is no length scale in the
problem and E~ R. It is precisely the function of
the additional term, I.t, in the effective Lagrangian
used by Skyrme and Balachandran et al. ~ to stabi-
lize this solution. Let us then compare their solu-
tion with the present one.

The nonlinear o. model has a topological number
associated with it corresponding to the mapping of
the compactified configuration space R3 into the
(m, o) field space (S3) given by [Ref. 3, Eq. (6),
and Ref. 4]9

t = (I/12m') JI (d'X/~y ~').'~"...„@'h,@~a,@'6 @

=m '[0(r=~) —6(r=0)+ —', {sin20(r ~) —sin20(r 0))],
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In Ref. 4 the meson Lagrangian, namely, Lo+ L, ,

supports a soliton with t =1. Goldstone and
Wilczek have shown that in this case "t" is also
exactly the baryon number of the vacuum. By vac-
uum is meant the soliton background in the ab-
sence of any valence nucleon. In the soliton back-
ground the Dirac spectrum had bound states. If we

occupy the lowest positive energy bound state, we
get a "soliton nucleon"'o system with 8 =2. (In
Ref. 4 the lowest bound-state energy is simply ad-
ded to the soliton energy to get the mass of this ob-
ject, whereas the above solution is a self-consistent
one which takes the reaction of the fermion source
on the soliton fields into account. ) Now if the term
Lt is gradually turned off, the stable solution
presented above is realized. Since the meson field
configuration at x = 0 and x = ~ is unchanged so is
8 (=2). The stability of the present 8=2 soliton
(in contrast to the 8 = 1 soliton) is physically un-
derstood: as the soliton shrinks, the size of the nu-
cleon bound state pinned to it decreases, raising the
nucleon kinetic energy until equilibrium is
achieved. The only B= 1 states that my solution
can decay into are the plane-wave nucleons of much
higher energy since the single soliton states in the
present model are unstable and not physical.

The baryon number of my solution is nonpertur-
bative. Quantum fluctuations" are unlikely to alter
that. They will, however, change the energy as they
will for the solution of Ref. 4. This question is yet
to be addressed. In the absence of quantum fluc-
tuations and the context of the well worn and ac-
cepted o- model I have found a stable object which
obviously cannot decay into the two —plane-
wave —nucleon channel, its energy being less than
even a single nucleon. Does this uncover a prob-
lem in the accepted o- model? Certainly, nuclear
physics would seem to exclude the existence of
such a state. The only way to reclaim the physics is
then to look back at the assumption of the model
field theory which treats the nucleon as a point ob-
ject in interaction with the o- and m fields. Clearly
if the nucleon has substructure at the length scale of
the equilibrium size (r = 0.7 fm) of the soliton, the
model field theory, as such, is no longer viable.
Such considerations will apply to field theories with

nontrivial topology linked to fermion number in

general.
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~OIn this o- model, there is thus a dual description of the
baryon number or nucleon. Currently, popular purely
mesonic Lagrangians purport to avoid this by identifying
the soliton with the B =1 nucleon. However, any field
theory of soliton (nucleon) interactions must have one
pion exchange and spontaneous chiral-symmetry break-
ing. This would necessarily resemble the o- model,
whence the soliton-nucleon duality reappears. New con-
sistency requirements may then be necessary.

ttThere are indications that the lowest-order (to order
tt) bosonic fluctuations in the linear cr model generate a
term of the type L~, the stabilizing Skyrme term [T. Ap-
plequist and C. Bernard, Phys. Rev. D 22, 200 (1980)].
Since the fermion single-particle states give a contribu-
tion of order h, it is just these bosonic fluctuations that
we need to include to this order and they preserve the
stability in the B =1 state.


