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Quantum-Slip Effect on the Viscosity of Superfluid 3He-B
at Very Low Temperatures
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We demonstrate that the flow of excitations in superfluid He in restricted geometries is
strongly influenced by Andreev scattering at very low temperatures. The effective viscosity
is calculated in a simple model and shown to agree with the one observed in a torsional-
oscillator experiment.
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The shear viscosity of a normal Fermi liquid is
known to increase as 1/T, when the temperature T
is lowered, as a result of the increase in the quasi-
particle mean free path. In the pseudoisotropic B
phase of superfluid He one expects' the viscosity
at low temperatures to approach a constant value.
This result reflects the competition between the
rapid increase in mean free path and the rapid de-
crease in the number of excitations as the tempera-
ture is lowered. Despite the general nature of this
prediction, experiments have yielded an effective
viscosity that tends towards zero with decreasing
temperature. The explanation of this discrepancy is
believed to be associated with mean-free-path ef-
fects which eventually become dominant at low
temperatures where the bulk mean free path may
become larger than characteristic dimensions in the
experiments. In this temperature region a conven-
tional hydrodynamic analysis of an experiment
yields an effective viscosity which may differ by an
order of magnitude from the true one. Mean-free-
path effects are governed by the nature of the
scattering of excitations at the confining walls. At
low temperatures and for a microscopically rough
surface one may expect elastic scattering with a
broad angular distribution to be dominant. Howev-
er, by assuming purely diffuse scattering one may
account for only part of the discrepancy, and quan-
titative agreement cannot be obtained at low tem-
peratures.

In this Letter we shall discuss a new mechanism
for interaction of excitations in superfluid He with
a boundary, which is associated with the change of
the order parameter near a wall. The particular
scattering process responsible for the increase in
fluid slip is the so-called Andreev reflection4 well
known from metallic superconductors. This reflec-

tion process reverses the group velocity of a quasi-
particle, but leaves its momentum nearly un-
changed. A microscopic treatment of Andreev
scattering for the case of a specularly scattering sur-
face has been given recently by Kieselmann and
Rainer. 5 It has also been considered by Greaves
and Leggett in the context of quasiparticle ballistics
in the A phase. Here we show that this scattering
process increases the flow of excitations between
parallel plates which determines the damping in a
torsional-oscillator experiment. We refer to this as
a quantum-slip effect. We shall see that inclusion
of Andreev scattering may explain the long-
standing discrepancy between the measured and the
calculated shear viscosity.

There exists by now a large body of experimental
work on the flow of quantum liquids in a region
where the mean free path of the excitations is com-
parable to or larger than characteristic dimensions
in the experiment. " To account in a first ap-
proximation for the effects of boundaries under
such circumstances Hejgaard Jensen et al. intro-
duced a slip boundary condition relating the veloci-
ty at a wall to the velocity gradient near the wall,
uo ——( (Bu/Bz )o, and calculated the temperature-
dependent slip length ( in the superfluid.

The slip length is generally of the same order of
magnitude as the bulk mean free path except when
the scattering is nearly specular and the slip length
therefore very long. When the bulk mean free path
is larger than the characteristic dimensions in the
experiment, this slip concept loses its meaning. In
this regime the flow must be determined from solu-
tions to a kinetic equation that takes the appropriate
boundary conditions into account for the geometry
in question. For Poiseuille flow between parallel
plates this was done in Ref. 3 for diffuse scattering
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by use of variational methods, which were shown
recently by Einzel et al. ' to be accurate to better
than 2'/o in the slip regime. The Poiseuille flow
determines the damping of the torsional oscillators
used in Refs. 2 and 8.

As recently shown by us' the variational method
employed in Ref. 3 can be applied to more general
scattering laws than the diffuse one. Here we shall
use the method to investigate the effects of An-
dreev reflection.

The magnitude of the quantum-slip effect com-
pared to the usual one depends on the degree of
suppression of the gap parameter at the wall.
Though this is not known in detail yet, the gap
suppression has been determined for the case of
specular scattering near T, by Ambegaokar, de
Gennes, and Rainer' and by Buchholtz and Zwick-
nagel. ' In the specular case one finds that the gap
component parallel to the surface normal is com-
pletely suppressed, awhile the perpendicular com-
ponents are slightly increased. The diffuse case was
also investigated by Ambegaokar, de Gennes, and
Rainer' who found that all components were af-
fected, though by different amounts.

For a first estimate we shall approximate the or-
der parameter d; of the Balian-Werthamer state by

d, ( r ) =R,h(z) b, where R, is an r -indepen-
dent orthogonal matrix and h(z) a function of the
distance z from the boundary situated at z = 0,
while 5 is the bulk energy gap. The function A(z)
varies on the scale of the coherence length and
tends to unity far from the wall.

The interaction of the Bogoliubov quasiparticles
with the wall induced by the gap suppression is
characterized by the reflection coefficient R, de-
fined as the ratio of the reflected and incident
currents. The current is proportional to ( l u l

z

—lvl ), where u and v are the usual quasiparticle
amplitudes. These are determined as solutions of
the Bogoliubov-de Gennes equations, which may
be written in the form

—i (d v/dz) = ku —5 (z) v,

I ( d v/dz) = k v —5 (z) u.

The dimensionless variable z is here the distance
from the wall in units of tv„/b, , and k is a di-

mensionless energy variable, k = E/A. Here E
= (b,2+( )'i denotes the bulk excitation energy
for a Bogoliubov quasiparticle with ( being the
normal-state excitation energy measured from the
Fermi surface. Equations (1) describe the situation
at normal incidence. When the momentum of the
incoming quasiparticle makes an angle 0 with the

surface normal, Eqs. (1) are unchanged, but the
spatial derivative d/dz has to be replaced by
cosH(d/dz). As a model for the gap variation we
take

p + (1 —p) sin(7rz/2zt); 0 & z & zt,Az=
1; z &zt.

(2)

The boundary condition at the diffusely scattering
wall is simulated by assuming A(z) =0 for z & 0.
The constant z

&
is of order unity, corresponding to a

suppression of the order parameter over a region of
the size of the coherence lenght tv F//b, . The param-
eter p is the ratio of the gap at the wall and that in
the interior and is expected to be less than unity.
We treat both p and z& as independent parameters
in the following calculations.

The reflection coefficient R for Andreev scatter-
ing depends on the energy variable E as well as the
angle 0. For a step-function variation, h(z) = 0 for
0 & z & zt, b (z) = 1 for z & zt, one finds" the re-
flection coefficient R'"= (E —l(l)/(E+ l(l). At
the gap edge ((=0) the reflection is complete
(R =1). Generally, R decreases faster with in-

creasing energy for a larger value of the gap at the
wall and/or a larger width zt.

Next, we shall indicate how one calculates the
flow of the excitation gas taking into account the
Andreev scattering at the walls. Let us consider the
problem of shear flow with the velocity u (z) in the
half-space z & 0, the velocity being parallel to the
infinite plane wall at z =0. We introduce distribu-
tion functions f-, (z) for quasiparticles moving

away from the wall (velocity v, & 0) and f- (z)
for quasiparticles moving towards the wall (v, & 0).
The boundary conditions on f-, may be expressed
as follows;

lv, lf-, (0) = X (plwlp')lv, 'If- (0),

v,
' (0

where the transition probability (plwlp') is the
probability that a particle hitting the wall with
momentum p' leaves it in the momentum state p.
To proceed further we shall assume that (p l w l

p')
is the sum of two terms, one describing the diffuse
scattering by the wall and one proportional to
R 5(p —p')5((~+/~), which accounts for the An-
dreev scattering.

When R = 0 we thus recover the results of Ref.
3, which were based on diffuse scattering. It is
straightforward to include the Andreev scattering in
the general variational expressions for the slip
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length $ discussed in Ref. 12. We shall now indicate how to treat the more general case of Poiseuille flow in
a parallel-plate geometry for arbitrary Knudsen numbers in the presence of Andreev scattering.

Following Ref. 3 one may derive an integral equation for the velocity field of Poiseuille flow between in-
finitely extended parallel plates at z = + d/2 incorporating the boundary condition (3). The kernel of this in-
tegral equation is given by

1
H(z, z') =5(z —z')—

Pn p

v, )0
p„~~ '(exp( —Kpiz z i)

+ 2R-, (1 —R-„) ' cosh(~-, z) cosh(K pz )), (4)

where pa= g-p„z( —Bf /BE) is the density of the normal component in the absence of Fermi-liquid effects
and R-„=R exp( —K-d) describes the Andreev reflection effect. K-„= (u-, ~) is a p-dependent wave

number and f (E) is the Fermi function. Since H is a positive semidefinite operator, the usual variational
principle yields a lower bound on the average velocity field, which may be conveniently expressed in terms of
the effective viscosity q,«as

f

d/2 2 d/2 d/2 —1)A —Jt dz P(z) Jt dz Jt dz' P(z)H(z, z')P(z') —1 —A2B .
jeff

Here

B = —„dz/uzrz, 2 =B 'y/(1 —
A. zy), y = uF X-„v-„(—Bf /BE)/X-( —Bf /BE);

v is the quasiparticle lifetime.
We have evaluated and optimized the bound Eq.

(5) using the single parameter trial function $(z)
= C —z, which accounts for a parabolic as well as a
flat velocity profile in the hydrodynamic and Knud-
sen regimes, respectively. In Fig. 1 the best lower
bound on 71/q, «determined in this way, multiplied
with the inverse Knudsen number d/t~ = (d/uF~)

10
1QQ

3 d:
eff l~

50

5 1 05
I I I

0.2
I

Q.l

I

005 i%1/d
I

20

I

0.2 0.3
I

0.4
I

0.5
I

0.6 T/ T, 0

FIG. 1. Inverse effective viscosity of the Balian-
Werthamer state scaled with qd/I„vs T/T, for d = 94

p, m. Full curves are obtained from Eq. (5) for diffuse
scattering (curve 1), diffuse and Andreev scattering with

zl= 1, p =0.5 (curve 2); zl = 1, p =0 (curve 3), and the

step function (curve 4). Dashed lines (1—4) are the cor-
responding slip approximations.

x (1 —&zy)/Qy, is plotted as a function of tempera-
ture for a plate separation of d = 94 p, m and param-
eters appropriate for 30 bars pressure. For this we
have used the values zjv T =0.26 p, sec (mK)z for
the normal-state relaxation time ~z and A.2=0.74
for the collision parameter X2, in accordance with
the recent work by Pfitzner and Wolfle, ' as well as
the explicit form for 7. (T) and an approximate gap
parameter /t (T) discussed by Einzel. '6 The full
curves are obtained for diffuse scattering (1), and
for diffuse and Andreev scattering (2—4) for vari-

ous gap profiles. As expected, variations of the gap
function as described by the parameters z I and p in

(2) are seen to produce sizable changes. The
dashed curves represent the corresponding slip ap-
proximations q/q, rr

——1+6$/d which are seen to
differ substantially from the full lines for T/T,(0.4. In the extreme Knudsen limit (l„/d ~),
ti/Yl ff is seen to diverge logarithmically.

In Fig. 2 we apply our theory to the experimental

ff data obtained in Ref. 2 in order to extract bulk
viscosity values. Multiplying the experimental data
for q, rr( T)/q, rr( T, ) by the correction factor
[ ii ff( T )/ t) ( T ) ] tl ( T)/ tl ff( T) for various choices
of the parameters p and z& one finds the solid
curves. This should be compared to the theoretical
result for the bulk viscosity q(T) q/(T, ) obtained
by Einzel' as indicated by the dash-dotted line in

Fig. 2. For p = 0.3 and zl = 1 the agreement is seen
to be excellent: The "viscosity droop effect" is
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may resolve the long-standing discrepancy between
calculated and experimental viscosities.

0.&—
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completely removed. It is evident that the step
function (p = 0, z, = 0) yields too large a correc-
tion, ~hereas in the absence of Andreev scattering
(p = 1) the droop remains. It should be em-
phasized that the droop cannot be removed either
by accounting for Andreev scattering within the slip
approximation q/q, « ——1+6(/d only.

We stress that this agreement is based on a crude
model for the gap variation near a wall and does not
allow us to draw conclusions about the actual de-
gree of gap suppression at the wall. Also the as-
sumption of diffuse scattering at the walls may be
subject to improvement as very recent experimental
results for normal He at very low pressure seem
to indicate. It is clear, however, that the mecha-
nism of Andreev scattering is an important one and

FIG. 2. Viscocity of 'He-B at 30 bars vs T/T, Points. ,
effective viscosity q, rr(T)/q, rr(T, ) from Ref. 2. Dash-
dotted line, bulk theory (Ref. 16). Full lines, data points
(Ref. 2) corrected for mean-free-path effects with use of
Eq. (5): diffuse scattering, curve 1; diffuse and Andreev
scattering (z~ = 1, p = 0.3), curve 2; step profile, curve 3.
Dashed line, slip approximation of curve 2.
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