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The model of cluster growth by diffusion-limited aggregation of clusters is studied in two
dimensions and the cluster size distribution n,(¢) is determined as a function of the cluster
size s and the time r. A dynamic scaling function of the form ny(t) — ¢t~ *s~"f(s/t?) is pro-
posed and is shown to lead to the scaling relation w = (2 — 1)z among the critical exponents.

The simulation results support this scaling law.

PACS numbers: 05.40.+j,05.50.4+q, 05.70.Jk, 64.60.—i

The formation of large, random clusters by non-
equilibrium growth processes such as aggregation,
coagulation, flocculation, and polymerization is one
of the main features of a wide range of phenomena
in science and technology.! At the present time,
however, our understanding of the basic physics of
such nonequilibrium processes is relatively limited
in comparison to equilibrium phenomena.

Very recently, Meakin? and independently Kolb,
Botet, and Jullien® have introduced a dynamic
growth model to describe cluster formation by ag-
gregation of clusters. This model is a combination
of the diffusion-limited aggregation process of Wit-
ten and Sander* and Sutherland’s model® ¢ of aggre-
gation of clusters moving along straight trajectories,
and embodies many of the features present in ex-
perimental situations. Initially the system consists
of a fixed concentration of Brownian particles which
irreversibly join together upon contact to form a
cluster. The clusters and the single particles contin-
ue to diffuse and form new, larger clusters by bind-
ing together. Previous studies of this model® 3 have
shown that on a finite lattice the final stage of the
process is a highly ramified, scale-invariant struc-
ture possessing the relatively low fractal dimension’
D ~1.4-1.5 in two dimensions. Although it ap-
pears that the Sutherland’s aggregates have nearly
the same value of D in two dimensions, the dynam-
ics of the two aggregation processes is different, be-
cause the time dependence of the distances traveled
by the diffusing clusters differs from that of the
clusters moving via straight-line trajectories. The
fractal nature of these aggregates is a feature shared
by other diffusion-limited aggregation models.*?

In this Letter we investigate the cluster size dis-
tribution n,(¢) as a function of the cluster size s and
the time ¢ in order to describe the temporal evolu-
tion of the aggregation process. In contrast, earlier
studies have been mainly concerned with the mor-
phology of the large aggregates. The results show
that n,(¢) has a power-law decay— characteristic of a
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critical type behavior—in both s and t A new
dynamic scaling form for n,(¢) is proposed and is
shown to be in agreement with the simulation
results. Our approach is analogous to the dynamic
scaling theory’ developed for the time-dependent
behavior in thermal critical phenomena. Cluster
size distribution has been extensively studied in
equilibrium models!® and its importance in non-
equilibrium processes has already been recog-
nized.!"'* However, the dynamic scaling function
introduced here has not been proposed before. We
expect this scaling form of n,(¢z) to have a wide
range of applications in other dynamic aggregation
processes.

The two-dimensional simulations of the aggrega-
tion of clusters were carried out on a square lattice
with periodic boundary conditions. Initially N,
=pL2 particles are randomly placed at N sites of
an L X L lattice. The particles are then allowed to
diffuse by use of standard methods.>? Particles at
nearest-neighbor positions are permanently joined
together to form a cluster. Clusters and particles
are picked at random and moved with a mobility in-
dependent of their size. Clusters that touch stick
together and form a new, larger cluster.

The cluster size distribution is defined by n,(#)
= N, (¢)/L?, where N,(t) is the number of clusters
containing s particles at time ¢ It is important to
point out that in numerical experiments the time
unit can be defined in a number of ways. For ex-
ample, the time interval Az by which ¢ is increased
after a cluster has been moved by one lattice unit
can be chosen to be equal to unity (Ar=1) or to
s/Ny (At=5/N,), where s is the number of sites in
the shifted cluster. Choosing At =1 leads to an un-
physical acceleration of the clusters with increasing
time. The reason is that the number of clusters de-
creases with time and on the average more steps are
made by a given cluster in the same time interval as
time increases. In order to have a physical time
(i.e., a time-independent cluster diffusivity) we
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choose At =s/N,, because the number of clusters
decreases as the inverse of the average cluster size.
The definition Az =s/N, is analogous to the time
increment used in the equilibrium calculations!’
(where ¢ is measured in Monte Carlo steps per site
and At is equal to unity if on the average all of the
spins in the cell have been checked once). There-
fore, in the following, Az =s/N, will be used for
controlling the time.

The dependence of the cluster size distribution
on s at fixed values of ¢ is shown in Fig. 1. These
results were obtained with use of an initial particle
density p=0.05 on a square lattice with L =400.
The corresponding results for fixed s and varying ¢
are displayed in Fig. 2. Several important con-
clusions can be drawn from these figures. The
straight lines in Fig. 1 correspond to an algebraic
decay of ny () as a function of s. However, in con-
trast to equilibrium models, the exponent 7 charac-
terizing this decay is less than 2. The cluster size at
which this decay cuts off scales with . The plots in
Fig. 2 indicate a novel dynamic behavior: For fixed
s, ng(¢) decreases with time according to a power
law.
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FIG. 1. The cluster size distribution function n,(¢) vs
s at times t =40, 160, and 640. These results were ob-
tained by averaging fifty runs on a 400x 400 cell for a
density p=0.05. The straight lines have a slope 7 =0.75
and indicate a power-law dependence of n;(#) on s.
Dashed lines are guides to the eye.
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The cluster size distribution found above can be
well represented by the following scaling form

ng(1) ~ 1t~ *s~7f(s/1?), (1)

where the cutoff function f(x) =1 for x << 1 and
f(x) << 1 for x >> 1. A novel feature of (1) is
the presence of two new dynamic exponents w and z
in addition to the usual static exponent 7. The term
t~" describes the power-law decay of n,(¢) with
time for every s. This is a specific feature of the
cluster-cluster aggregation process, because for
t >> s, small clusters die out by forming larger
clusters. On the other hand, the characteristic clus-
ter size is determined by the denominator t>. Note
that the assumed s dependence of n,(¢) resembles
the scaling Ansatz used in the theory of thermal and
geometrical critical points.!®!¢ However, unlike
other kinetic growth models,*®!7 the time in the
cluster-cluster aggregation model is not related to
the number of occupied sites in the system since p
remains constant during the aggregation process.
The scaling function (1) is expected to be valid in
the limit p — 0 at large s and t. However, the re-
gion of ¢ values for which (1) holds depends on L.
In a finite system the distribution n,(¢) loses its
meaning when the number of clusters is very small
or—as it happens at the final stage of the simu-
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FIG. 2. Dependence of n,(¢) on the time ¢ for three
selected clusters sizes s =1, 10, and 50 calculated from
the same simulations as Fig. 1. The slopes of the straight
lines give the exponent w = 1.7 determining the algebra-
ic decay of ny(t) in time.
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lations* >— it becomes equal to 1. Of course, in the
thermodynamic limit (L — o) this problem does
not arise.

As an important consequence of the scaling form
(1) and the normalization condition

No/L*=p= Esns(t)s ~ rns(t)s ds, 2)

one can obtain a scaling relation among the ex-
ponents 7, w, and z. In fact, using (1) and (2) we
find

p~ t_wfws”"”f(s/t’)ds
— t_w+(2—f)z. (3)

Since p remains constant (p < 1) as ¢ goes to infini-
ty, (3) implies that

w=(2-1)z (4)

Clearly, 7 must be less than 2, because w,z > 0 are
the only physically meaningful values of w and z.
This result is a direct consequence of the dynamics
of the model, because in equilibrium models 7 > 2.
The significance of the inequality 7 < 2 for cluster
statistics has been pointed out in Ref. 13, where
7 < 2 was obtained for diffusion-limited deposition.

The mean cluster size S(¢) diverges as t — .
Expressing S (¢) in terms of n,(¢) and using (1) and
(4) we find

Sns(0)s?
Sn(t)s

~t‘“’rs_"+2f(s/tz)ds~tz. ©)

S(1)=

The time dependence of S(¢) is shown in Fig. 3.
From Figs. 1-3 the following values are obtained
for the critical exponents w, z, and 7:

w=170+£0.2, z=14102,

(6)
7=0.75 £ 0.15.

All three exponents are nonclassical and different
from the exponents for related models. The uncer-
tainties given in (6) are only statistical and errors
due to finite system size may be significantly larger.
The fact that 7 <1 implies that ng(¢)¢t*t" decays
very slowly with s. Perhaps the most significant
feature of the values in (6) is that they satisfy the
scaling relation (4) and support the scaling assump-
tion (1).

The scaling expression (1) can be written in an
alternative form

ng(t) ~ s~ % (s/t?) @)
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FIG. 3. The mean cluster size S(¢) as a function of
time. The straight line corresponds to an asymptotic
slope z = 1.4. Circles and triangles refer to the data ob-
tained from 200 runs with cell size L =200 and 50 runs
with L =400, respectively.

with a scaling function g (x) << 1 for x >> 1 and
g (x) ~ x2 for x << 1, where A is usually called the
crossover exponent. Although (7) does not contain
the power-law decay of n,(¢) in ¢ and s as explicitly
as (1), it enables us to discuss the crossover in clus-
ter statistics as a function of time. For x <<1,
ng(t) ~t~*4s~9+4 and the scaling expression (1) is
recovered with f(x)=1 and zA=w, §—A=r.
Using these expressions in the scaling relation (1)
we obtain 6 =2. For x >> 1, n,(¢) decays as 1/s?,
independent of the dimension, modified by a function
which decreases faster than any power of s.

Our work is the first dynamical scaling and Monte
Carlo study of the time-dependent cluster size dis-
tribution in the diffusion-limited cluster-cluster ag-
gregation model. The present results can be com-
pared with those obtained from the Smoluchowski
coagulation equation approach in which the cluster
size distribution has been determined by assuming
certain restricted forms for the rate constant. In an
early study Sutherland and Goddarz-Nia® used a
form for ng(#) which was independent of s at long
times. This result disagrees with our Monte Carlo
and scaling expression. The main reason for the
different simulation result is that the Smoluchowski
equation is a mean-field approximation in which the
spatial fluctuations are not taken into account,
although they play an essential role in the aggrega-
tion process.

Although in this Letter we studied the dynamics
of the cluster-cluster aggregation model in two di-
mensions, we would like to point out that a similar
type of dynamics is expected in one dimension.
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This is in contrast to the static properties, such as
the fractal dimension, which are trivial in d =1. Fi-
nally, the dynamical scaling approach presented
here is perhaps useful in the study of a number of
other dynamic processes such as antigen-antibody
aggregation,!? coagulation of Ising droplets in the
metastable state,!! and kinetics of gelation and ag-
gregation as described by the Smoluchowski equa-
tion.4
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