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Hausdorff Dimension and Uniformity Factor of Strange Attractors
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The Hausdorff dimension Do of a strange attractor is argued to be the fixed point of a re-
cursive relation, defined in terms of a suitable average of the smallest distances 5& between
points on the attractor. A fast numerical algorithm is developed to compute Do. The spread
X in the convergence rates towards zero of the distances 5, (uniformity factor) as well as the
stability of the fixed point are discussed in terms of the entropy of the 5& distribution.

PACS numbers: 02.50.+s, 47.25.—c, 52.35.Ra

A peculiar feature of a strange attractor which
distinguishes deterministic chaos from a random
process is its fractal (Hausdorff-Besicovitch) di-

mension Do. ' A direct estimate of Do is usually
achieved through the computation of the so-called
capacity, by means of the well-known box-counting
algorithm. As has been pointed out by some au-
thors, 2 3 this is a method very consuming of
memory and it is impractical for a phase-space
dimension greater than two.

In order to overcome these difficulties, several
different methods have been recently proposed.
The first one4 yields a quantity v which has been
shown to be a lower bound for Do. More recently
Termonia and Alexandrovitch5 have defined a dif-
ferent dimension DF, which apparently is a closer
approximation to Do.

Hausdorff dimension calculations employ collec-
tions of balls that cover the attractor, and the ball
size can vary from place to place. While the defini-
tion of Hausdorff dimension requires consideration
of all such collections, it is generally believed that
any natural choice of ball sizes will give the same
results for typical attractors. Capacity for example
uses covers with all balls of the same size.

One limitation of capacity is that it is difficult to
be sure how much of the low-density parts of the
attractor are missed by the collection of balls. In
our case it is expected that the fraction covered is
constant, and this aspect becomes part of the scal-
ing process.

As in the above mentioned methods, we start
generating n points of the attractor but, differently,
we study the dependence of the "mean" nearest-
neighbor distance on n. By doing so, we are able to
define a dimension which depends on the way the
average is performed. We then show that the
Hausdorff-Besicovitch dimension coincides with a
specific averaging rule and, moreover, it turns out
to be the fixed point of a suitable recursive relation,
whose stability is proven. Furthermore we develop
a practical numerical algorithm which is as fast as

t5(n) = Kn (2)

in any "regular" attractor. In fact, if we fill a
bounded region in d-dimensional Euclidean space
with n randomly distributed points, Eq. (2) holds
with a=d.

To make a connection with Ref. 5, we now define
~5(n) as the mean distance between qth nearest
neighbors. At variance with Ref. 5, we investigate
the dependence of ~5(n) on n rather than on q.

Let us introduce a generalized averaging pro-
cedure

n

5(n) —= —X q5 (n) =Kt(y)n ~ (3)

for some Kt(y) where, depending on y, the role of
different length scales is enhanced. Hence, dif-
ferent choices of y yield different estimates D(y).
In contrast, the role of q turns out to be irrelevant.
Therefore, from now on, we will drop the index q,
unless explicitly stated.

In order to clarify the meaning of the function
D(y), we discuss the simple, analytically solvable

the methods of Refs. 4 and 5, and has nearly the
same memory requirements. Finally we show that
the stability coefficient A. of the fixed point Do
directly measures the spread in the rate of conver-
gence to zero of the nearest-neighbor distances.
Indeed, this spread is the reason for the differences
among the methods so far proposed. The "unifor-
mity factor" A. can be written in terms of a suitable
entropy of the distribution of mutual nearest-
neighbor distances.

Let us first define t5, (n) as the distance between
the i th point and its nearest neighbor, which expli-
citly depends on the number of points n. The mean
distance

n

t5(n) = —X t5, (n),
ll ]

can be heuristically shown to go as
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generalized Baker transformation, s before going to
the general treatment. If we indicate with nt and nq
the two contraction rates, we recall that the Haus-
dorff dimension of the set of points lying on the x
axis appears to satisfy the following relation

~8

—D —D
1 =0!] +0,'p (4) .6

—t/D( )

where n =2"+'. From this

D(y) =yln2/[In2 —ln(nt 'r+n, 'r)]. (6)

By comparing Eqs. (4) and (6) it is readily seen
that, if y=Dp, Eq. (6) becomes an identity. It is
therefore natural to consider Eq. (6) as a recurrence
whose fixed point is y = Dp.

This is a very simplified example of fractal
behavior. Indeed, any time a new point is generat-
ed on the attractor, the contraction rates o.

&
and o.z

have the same occurrence probability. Therefore
we can generalize Eq. (5), associating with nt and
nq, two different probabilities pt and pq=1 —pt,
respectively. The sum in Eq. (3) now cannot be
analytically done; anyhow, as shown in Fig. 1 where
D(y) is plotted for different pt and p&, the fixed
point Do remains unchanged. This is in accordance
with the Hausdorff definition of dimension, since
Do is a purely geometrical quantity which depends
only on the contraction rates, but not on their
respective probabilities. s

Incidentally the curve a in Fig. 1 corresponds to a
uniform attractor, while b corresponds to the above
mentioned simplified example (pt = pq = —,) .

We can immediately exploit the stability of the
fixed point to develop a computational algorithm.
Starting with a suitable value of y, we let the system
evolve and plot in[5(n) ] vs ln(n), determining the
new value y' from the slope of the curve. Such a y'
is used to repeat the procedure until we get Do with
a satisfactory accuracy. Notice that it is not neces-
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Let us evaluate D(y). Starting with the segment
(0,1), we obtain, after the first step, two intervals
of lengths nt ' and n& '. Asymptotically we are left
with a Cantor set of points. In order to perform the
calculation, we consider the kth step of the process
and let k go to infinity. Since the extrema of the 2"
intervals are points of the asymptotic attractor, the
lengths of such intervals are exactly the first
nearest-neighbor distances in the set of 2"+'
points. 7 Hence

.
]/y

th(n) = —(nt '+np )
1 —y k

2k

.4

~ 2

-2 3

FIG. 1. Plot of the function D(y) vs y in the case of
the generalized Baker transformation for the values
o.

~
= 2.50. . . , o.q

= 5.80. . . and different p~,pq. The slant-
ed straight line is the diagonal D = y. The curve a corre-
sponds to pt=0. 61 (uniform attractor), b to p, = Y'

(logistic map), c to pt=0. 39, and 0 to pt=0.25. All the
curves cross the diagonal in the same fixed point Do.

—Do —Do'lno, &+ o.&
'lno.

&=1—Dp
ln2

We find that, for the logistic map, the uniformity
factor A. is X =0.0358. . . , i.e. , the fixed point is very
stable. Indeed, if we start with y= 1 (linear aver-
age), in only two steps we get 0.5326, which differs
by 0.1% from the right solution.

We now deal with the case of a general dynamical
system and, for this purpose, we recall the defini-
tion of Hausdorff-Besicovitch dimension. Let us
consider a covering of the attractor with d-

dimensional cubes of different sizes e;. We define
L„(e) as

L (e) —= infx, .eP, (8)

where the infimum is taken over all coverings satis-
fying the condition e; ~ e. When we let e go to
zero, there is one critical value y = Dp above which
L (e) goes to zero and below which L (e) tends to
infinity.

We rewrite Eq. (3) as

(2)

n

L„[o(n)] =—Xn,'(n) = E(y) n'

sary to use a large number of points in the first
steps of the process.

The stability of the fixed point is simply studied
by taking the derivative of Eq. (6) with respect to y
for y=Dp,

) -=D'(D, )
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We can now interpret the 5 s as the edges of cubes
centered around the n points. Such a set of cubes
reasonably covers a constant fraction of the attrac-
tor (this is certainly true if the attractor is eventual-
ly self-similar). Moreover we can notice that the
prescribed limit e 0 of Eq. (6) is simply accom-
plished by letting n tend to infinity, since all the
points are recurrent. Hence our definition of
dimension is reasonably equivalent to the Haus-
dorff-Besicovitch one. The quantity L~ has the
same property as L~: for y ( Dp ( & Do), when

D(y) & y ( ( y), L„will diverge to ~ (converge
to 0) for n tending to ~, which is equivalent to the
limit » 0 of Eq. (8). A more rigorous treatment
of this point will be developed elsewhere. '0

The general proof of the stability of the fixed
point Do is accomplished by taking the logarithm of
both sides of Eq. (3) and taking the derivative with

respect to y. We obtain

D (&)
, [inn —H„(y)]=E'+, Inn, (10)

where

n

H„(y ) = —Xp, lnp, ,

and p, =&,'/gi, 5,". This 8 entropy is a positive
quantity which attains its maximum value ln(n) for
a uniform distribution of points over the attractor.
In general it can be written as

H„(y) =(r(y)inn, (12)

where 0~a-(y) ~1. By inspection of Eqs. (10)
and (12) we find

(13)

Therefore, the fixed point y = Da is stable. In par-
ticular for a uniform distribution of points it is
superstable being o-(Do) = 1. Hence, the factor A. is
not only a stability parameter but also a quantitative

estimate of the probabilistic character of the strange
attractor.

We report in Table I the computed values of Do
and X for various attractors. " For the logistic map
we obtain a value of A. in close agreement with the
approximate prediction of Eq. (8) (X=0.0358. . . ).
Our value for Do, 0.538, is perfectly in agreement
with the theoretical predictiori, ' while an applica-
tion of the method in Ref. 5 yields 0.551. . . . We
are also able to give a rough estimate X for the
Henon attractor, while for the Kaplan-Yorke map
we only present an upper bound (being X =0):
this explains the concordance among all the
methods. The Zaslavskij map requires a detailed
analysis which will be performed elsewhere. Here
we simply want to notice that the Kaplan-Yorke
equation, '4 which links the Lyapunov exponents
with the fractal dimension, yields 1.551 +0.0005, '5

while our method gives 1.58+0.04. Hence, dif-
ferently from what is stated in Ref. 5, the value of
v = 1.50, being smaller than 1.55, is in agreement
with the estimated value of Do. Finally we point
out that the Zaslavskij map with these parameter
values requires a large number of points
( & 100000) in order to have a first reliable esti-
mate of Do. This difficulty has made the measure
of A. unfeasible.

Finally, our method allows the computation not
only of Do, but also of all the generalized Renyi
dimensions D». '6 More precisely, we show in Ref.
10 that each D» depends on different choices of y',

hence the rate of variation of D» vs q depends on A. .
In this sense knowledge of a single Renyi dimen-
sion is not sufficient to characterize a strange attrac-
tor and one must add at least the uniformity factor
A. as first necessary information about the "strange-
ness. "

The authors owe strong thanks to F. T. Arecchi
for critical remarks as well as for his encourage-
ment. One of us (A.P.) is grateful to A. Vulpiani
for early discussions.

TABLE I, Computed values of Dp and A. for various attractors.

Model'

Logistic map
Henon map
Kaplan- Yorke

map
Zaslavskij

map

Dp

0.538 + 0.001
1.27 + 0.015

1.43 +0.01

15.8 +0.04

Uniformity factor

0.038 + 0.002
0.025 + 0.012

& 5x 10-3

Number of points

16 000
16000

16 000

200000

'The parameter values are the same as in Refs. 4, 5, and 12.
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