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Quantum Measurements and Stochastic Processes
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A nonlinear stochastic process is presented that, for each realization and for large times,
reproduces Luders's projection postulate. The corresponding density operator undergoes a
linear evolution reproducing von Neumann's projection postulate. The violation of the Bell
inequality, for instance, is described with the two apparatus acting independently on the com-
posed system.

PACS numbers: 03.65.Bz, 02.50.+s

For simplicity let us first consider a two-valued observable, i.e., a projector P acting on the Hilbert space of
the system. Two postulates have been proposed to relate the state after a measurement of P to the initial
one. One is the von Neumann postulate'.

po PppP+(1 —P)p (o1 —P)
which relates the initial density matrix po to the final one. Next is Luders s postulate:

r

Ptgp/I IPI//pl I
with probability (P) y,

0 (1—P) Po/I I (1—P) lctol I with probability (1 —P) &
.

Luders's postulate is intended to describe individual measurements, whereas von Neumann's postulate
describes ensembles. If one averages over many measurements with the same initial state po, Liiders s pos-
tulate reduces to von Neumann's:

Pa=oooo (P)yo, +(1—P)yo, =PpoP+(1 —P)po(1 —P).'
I IP yo I

I' '
I I (1—P ) yo I
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There are fundamental differences between these
postulates: the first one is linear and deterministic
(for po), whereas the second one is nonlinear and
nondeterministic. This raises the following ques-
tions: (i) Can both postulates be reproduced as the
asymptotic solution of a single stochastic process
continuous in time? (ii) Is von Neumann's postu-
late compatible with a unitary evolution on a larger
Hilbert space? And (iii) one can ask the same
question about Luders's postulate. By compatible
we mean obtainable from physically motivated lim-

its. In this Letter we mainly address the first ques-
tion, which we answer positively by presenting a
stochastic process such that (a) for each realization
the state vector tends asymptotically to one of the
reduced states of Liiders's postulate, (b) the ratio
of realizations driving the state vector to an out-
come is equal to the "quantum probability, " and
(c) the associated density matrix undergoes a linear
evolution reproducing von Neumann's postulate.
In the case of simultaneous measurements we as-

1984 The American Physical Society 1657



VOLUME 52, NUMBER 19 PHYSICAL REVIEW LETTERS 7 MAv 1984

sume that the measuring instruments act indepen-
dently and we find that the proposed model repro-
duces the proper generalizations of (1) and (2).
The second question has been answered positively
by several authors who derived dynamical models
of von Neumann's postulate from a unitary evolu-
tion (see, for instance, Daneri, Loinger, and Pros-
peri and Whitten-Wolfe and Emch, the latter be-
ing mathematically rigorous; see also the reviews5).
This, however, does not answer the third question.
Indeed, the density matrix can evolve according to
(1), without any individual following (2). To illus-
trate this, let us briefly consider the following sto-
chastic differential equation

dQ, = —iPQ, o dk, , dk, = o)dt +d g, , (4)

p, = —i cu [P, p, ] ——,
' (P p, +p, P ) +P p, P. (5)

Consequently, for each realization, p, is a constant.
Equation (4) thus does not reproduce Luders's pos-
tulate. However, Eq. (5) reproduces von
Neumann's postulate. Accordingly the third ques-
tion remains open. But, as we shall see, the present
model makes it more precise.

The model is defined by Eqs. (7), (8), and (10)
below. In order to present it, let us first consider
the following generalization of the Schrodinger
equation:

p, = —iHQ, +k((H) p
—H)Q, , (6)

where H =H, k ) 0, and

(H), = (y, lHly )/(y ly )

This nonlinear evolution equation has been studied

by Gisin. ' It is the most general with the follow-

ing property': If $, = —iH P, —kHQ, and
—= @,/ll@, ll, then P, follows Eq. (6) and all solu-
tions of (6) are of this form. Accordingly, the non-
linearity of Eq. (6) is of the same kind as the one
which occurs in Luders's postulate (2). Let us note
that if H is bounded below, then, by Sz.-Nagey's
theorem, " the evolution (6) can be dilated to a uni-

tary evolution on a larger Hilbert space. ' From (6)
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where (, is the Wiener process [(d(, ) = dt] and ~

denotes the Stratonovich product. Since P has
two eigenvalues, Eq. (4) describes a fictitious spin

co is then the mean Larmor frequency and (,
describes a fluctuating magnetic field parallel to the
static field. Let p, = (P, lPlg, ) and p, = ((P,P, ))
where the double brackets denote the average over
the Wiener process (,. From (4) one obtains
dpr =0 and

one obtains

d p, = —i cu P Q, dt + (p, —P )Q, o dk, ,

dk, =f(k, , Q, )dt+dn, ,

(7)

(8)

where cu E R; p, = (P) &, n, is the Wiener process

[(d0., ) 2 = dt]; ~ denotes the Stratonovich prod-
uct6 8; and f is a function which we shall choose
such that the average of p, over Q. r is constant. As
we shall see, this is necessary for the description of
measurements which overlap in time. Upon recal-
ling the relation between Stratonovich and Ito prod-
ucts X ~ d1'=XdI'+ —,dXdI; we obtain from (7)
and (8)

dp, = 2p, (1 —p, ) ([I—2p, f (k, , Q, ) ]dt—+ du, ].

Hence, the only possible choice for f is

f(k, , y, ) = I —2p, . (10)

Equations (7), (8), and (10) define the model.
Each realization describes a single measurement.
The values that the stochastic process assumes then
are interpreted as part of the state of the apparatus.
Note that since f depends on p„Eq. (7) is not of
the type studied in Ref. 10, but is a generalization
of oisin and Piron. '

From (9) and (10) one sees that the average of p,
is time independent:

((pi) ) = ((po) ) = (P) p,

but for each realization of n„pr is time dependent.
Let z, be defined by tanhz, =—2p, —1. From (9) and
(10) one obtains

dzr = tanhzr d~ d (12)

(d/dt) (H) ~
= —2k ((H') ~

—(H) ~ ) ~ 0.

The system thus dissipates energy, except when it is

in an eigenstate of H, and it tends asymptotically to-
ward a stationary state. However, only the ground
state is stable.

Accordingly Eq. (6) describes the action of a heat
bath at zero temperature. The situation we want to
describe differs from this in two respects. First, as

it takes place at finite temperature, it is reasonable
to assume that the coefficient k is a stochastic pro-
cess. The Hamiltonian term could also contain
fluctuating terms, but they ~ould not affect the re-
laxation mechanism we are interested in. Next, a

measurement apparatus differs from a heat bath by

the fact that its state evolves in relation to the state
of the system. I assume thus that P, and k, satisfy

coupled stochastic differential equations6 8:
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The associated Fokker-Planck equation for the distribution function A. , (z) reads

P, (z) = —6, [tanh(z) A., ] + —,
' 6, i[.,

The solution of (13) is known' and provides the distribution function Pi(p) corresponding to (9):

(13)

X, (z) = (27rt) i exp' ———
2

II

(z —zp)', coshz
p, (p) = X, [tanh '(2p —1) ]/2p (1 —p ).2t, coshz0

' (14)

p, is normalized, but p, (p) ~ 0 for t (x),

p A 0, 1. Consequently, the distribution p, concen-
trates asymptotically at the points p = 0 and p = 1,
and from (11) one sees that the weights of these
concentrations are precisely the "quantum probabil-
ities" (P) &

and (1—P) &
. Finally the study of

equations of the form (7) [or (6)] shows that for
each realization of the stochastic process k„ the
state vector 1tp, moves in the plane defined by [lip

and P [IJp [if P [tdp 0or P——pp [tJp, the——n [tip is a sta-
tionary solution of (7)).

Consequently, each realization of k, reduces the
state vector [IJp as postulated by Luders and the ratio
of realizations of k, which drive [lip toward
P Ppl I IP [tip l I is equal to (P) &

.

Let us now consider the density operator which
represents the average over k, of the one-di-
mensional projector [[i[,[tJ, : p, = (([IJ,[[IJ, ) ) . Equa-
tion (7) is highly nonlinear. A straightforward

I

computation shows, however, that one recovers the
simple linear equations (5). The stochastic process
(7) mimics thus both projection postulates.

I now generalize the model to simultaneous mea-
surements of n compatible projectors P I, . . . , P„,
[P;,P, ] = 0 & ij For. example, each P, could
represent a counter, or a sensitive center of a
screen. For a one-particle system the P, 's would

then be mutually orthogonal (i.e. , P;PJ = S,,P ), but

this is not necessary for two-particle systems, as, for
instance, the famous Einstein-Podolsky-Rosen
correlated particles. "'

A natural extension of the model presented
above consists in adding n similar terms to Eq. (7)
with n independent noises. The idea is that the n

apparatus act independently and each apparatus acts
in the same way whether or not there are other ap-
paratus.

dt[tt = Q [ —i wipi(tt dt + [pi(t) —Pt[t[tt dk, (t)[dkt(t) [1—,2pt(t)]dt =+ d (t), tti (15)

n

dPi [.. .i 2 X (PJPI [.. .td PJt[. . . td ) Jt
j~]

(16)

d n—((p, (1 —p, ))) = —4 X(((p,p, —p,, )')&.
j~$

where pJ(t) = (P, ) &
and the ni(t)'s are n indepen-

dent Wiener processes. I do not know the solution
of (15). I shall nevertheless prove that Eq. (15)
reproduces Luders's postulate for each realization
of the n stochastic processes n~, and von Neu-
mann's postulate for the density operator
pi = ((4iAi') ) .

Put p;, ; = (P, , P, ) &
. From (15) one ob-

tains

I
processes o.j one has

p (t) ~ 0 or 1 for all j = 1, . . . , n
f~oo

(17)

—(([lJ, Q;[t(,)) 0 or 1 V i =1, . . . , m.
dh t

Now, if the P, 's are mutually orthogonal, at most
one pJ(t) may tend to l. But in general, several
p&(t)'s may tend to 1. Let {Qi}, i =1, . . . , m, be
the complete set of mutually orthogonal projectors
such that {Q[t[p['llQ[]ipll}, i=1, . . . , m, is the set
of all possible outcomes (i.e. , {Q},i = 1, . . . , m, is
the spectral family of the operator XJ",2 JP&).
The Q's are products of PJ's and (1—PJ)'s.
Hence, from (16) and (17) gets

The average of p, (l —p, ) is thus a nonincreasing
function of time bounded below by 0. Consequent-
ly its time derivative tends to 0. Hence the distri-
bution function concentrates for large times on the
state vectors for which pjp, =pj, V j,e. If j =e this
implies that for each realization of the stochastic

Finally, Eq. (15) is such that the state vector (iJ,

evolves in the vector space generated by
gt[]dp, . . . , g [][p. Consequently

i 0

ll0 ll
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for all i =1, . . . , m, and Liiders's postulate is satis-
fied.

Let us now consider the density operator
pg = ((/gag ) ) . A straightforward computation
shows that one obtains a linear evolution equation
( I. . ., . . .) denotes the anticomtnutator):

pg —$(—gog~[P~, pg] —
2 IPJ, pg}+P~pgP&)..

the fact that experiments, defined in terms of mac-
roscopical apparatus, do mostly not have predeter-
mined outcomes.

It is a pleasure to acknowledge beneficial discus-
sions with Professor G. G. Emch, Dr. M. O.
Hongler, Professor C. Piron, and Dr. J. C. Zam-
brini. This work was supported in part by the Swiss
National Science Foundation.

(18)

The solution of (18) is easily computed with the
help of the "matrix elements" Q;pgg, . It shows
that for large times p, satisfies von Neumann's pos-
tulate.

To conclude let me make four comments:
(1) Although the stochastic process (15) is non-

linear, the evolution of the density operator is
linear, in accordance with Luders's and von
Neumann's postulates.

(2) The apparatus act independently of each oth-
er and the projectors which represent them need
neither to be mutually orthogonal, nor to form a
complete set. The model can thus describe the ex-
perimental tests of the famous Einstein-Podolsky-
Rosen-Bohm correlations. ' ' The fact that the
model reproduces quantum mechanics, and thus
violates Bell's inequality, ' '8 is possible because of
the nonlocality of the evolution (7). Note that if
two measurements do not exactly coincide in time,
the model's predictions still agree with quantum
mechanics.

(3) If one interprets the state vector as a
representation of the complete state of an individu-
al quantum system, then one should study evolu-
tions which reproduce Luders s projection postu-
late, as has been emphasized, among others, by
Pearle. ' Let us note here "individual systems" are
opposed to "elements of statistical ensembles",
this does thus not exclude composed systems.

(4) The Wiener process of n, of the model plays
the same role as in the well-known model of
Brownian motion of a classical particle. This sug-
gests that there is a—yet unknown —underlying
deterministic evolution, as in the classical Ford-
Kac-Mazur model. The underlying evolution,
however, would be very sensitive to the precise mi-
croscopic state of the system plus apparatus. Note
that this is neither a hidden-variable theory (com-
pare with Bohm and Bub2'), nor does it contradict
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