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T Dependence of the Conductance in Quasi One-Dimensional Systems
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We present a theory of the temperature-dependent conductance G (T) of one-dimensional
systems which depends only on the general principles of quantum resonance. Resonant and
nonresonant conductances and temperature parameters To are found to be related in a way
which is in qualitative agreement with recent experiments. A new low-temperature regime is
predicted in which G (T) should change abruptly from Mott type to T independent or metal-
lic.
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A variety of experiments' have been devised to
examine the temperature dependence of the con-
ductance G(T) of quasi one-dimensional systems.
When these experiments are in the strong-local-
ization regime, they have found that at low
T, G ( T) contains apparently random-peak-and-
valley structure as a function of the Fermi energy
EF, this structure is not simply noise, however,
since it is reproducible upon temperature cycling. It
has become clear that these peaks and valleys are
actually detailed quantum signatures of the system,
macroscopic manifestations of microscopic struc-
ture. Theoretical work has shown that similar
behavior for G (T) as a function of E„is a manifes-
tation of transmission through the sample via
resonant tunneling through localized eigenstates,
which is responsible for a highly structured G (EF)
at T = 0. Within a theory which includes only ther-
mal population effects, 4 5 the structure seen in the
T W 0 experiments can be explained in terms of the
T =0 resonances. This theory can also predict the
ensemble average of the temperature dependence,
(lnG)~ —(To T)' ', as seen —experimentally in
the "valleys" of G(T). This finite-temperature
theory is clearly incomplete, however, since it does
not take into account the inelastic scattering
processes which occur for T ) 0; to provide a real-
istic understanding of present experiments, this
theory must be extended to include such effects.

Here we propose a modification to the previous
theory to include thermal scattering which, while

somewhat speculative, provides a qualitatively
correct description of the existing experimental
data. We 'predict that there should be at least three
distinct temperature regimes, and as an example we

give explicit numerical estimates of these tempera-
tures for the system of Ref. 1, for which roughly

Lo —4x 103 A (the localization length), Ta —10 K
(defined above), L —1x10s A (the length of the
sample), and w —3x 102 A (the apparent width of
the sample). 6 These three regimes are as follows:
(1) For T ) T3, ordinary Mott variable-range hop-
ping dominates the conduction and no resonances
are seen. Below we show that T3= To/4[in(L/
2Lp) ]2 = 0.4 K for Ref. 1; this is approximately the
temperature where resonant structure is observed
to disappear in the experiment. (2) For
T2 & T & T3, inelastic scattering broadens but does
not destroy the eigenstates of the system. Conduc-
tion proceeds by resonant tunneling through these
renormalized levels. Resonant structure is ob-
served in 6. The T dependence of the resonance
remains Mott type, but with a To different from
that in the nonresonant regime. We will demon-
strate that Ta —(Lo/2L) To —4 mK, below the
lowest T studied in Ref. 1, where Mott T depen-
dence and resonant structure was observed from—1 K down to —50 mK. (3) For T ( T2 inelastic
tic scattering ceases to influence G. A dramatic
change in the temperature dependence of G is
predicted to result: 6 should become T independent
in the valleys, and have a universal metallic T
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dependence (G~ T ') at the peaks. The Tdepen-
dence for the system in Ref. 1 should therefore
change sharply to an essentially athermal regime
below —4 mK.

The middle of the three T regions outlined above
is particularly interesting since both coherent and
incoherent processes contribute to the properties of
the conductivity. The behavior of G(T) in the T
regime can be explained in the language of collision
theory. First, we suppose that resonances are capa-
ble of existing in this T region; we will justify this
assertion shortly. Resonant and nonresonant con-
duction processes should be proportional since both
arise from the same microscopic disorder in the
sample. This proportionality is expressed in the fol-
lowing way: Near a resonant energy E„ the wave-
function amplitude A of a particle which has passed
through the resistor has the general resonant form

A, (E)cc B.(2LO)A„„/(E —E, +i SE).

Here A„, is the nonresonant amplitude outside the
resonance, SE is the resonance half-width, and
B E(2LO) represents the energy separation between
resonant levels which are less than some distance
Lo from a particular position in the sample (at the
center, for example). In a purely one-dimensional
case, BE(x) = h vF/x (Ref. 4); in the more realistic
case' in which there are several one-dimensional
channels in parallel, B.E(x) = 27rt /wxm' Here.
vF is the Fermi velocity and m' is the effective
mass. This formula includes neither a spin nor a
valley degeneracy factor because we expect negligi-
ble spin-flip and intervalley scattering, so that the
system actually consists of several essentially isolat-
ed subsystems. This was taken into account in the
experimental estimate of Lo. Equation (1) correct-
ly relates the amplitude precisely at the resonance
(E = E„) to that far away from it

()E —E, ) ))SE); however, the explicit Breit-
%igner form which we use for the resonance line
shape depends on the details of the system and sim-

ply provides a convenient interpolation between the
resonant and nonrcsonant regions. The transmis-
sion coefficient is given by the square of the ampli-
tude in Eq. (1), t =)A )2 ("m" denotes "mono-
chromatic") .

Temperature influences Eq. (1) in two ways.
First, it controls the effective resonance width SE.
From the uncertainty principle SE —h/r, where r
is lifetime of the resonant eigenstate. 7 can be ex-
pressed as v —vg. 7i is a "single attempt" time;
in the strictly one-dimensional case, 71 —a/vF. a is
the size of the effective well in which the localized
eigenstate sits; in the case of strong localization a is

the probability-density localization length Lo. p is
the probability of decay on a single attempt. Tem-
perature will influcence p much more than it will 7.
Thus in one dimension SE(T) —hv„(T)/Lo, or
more generally

SE(T) —BE(2L )p(T). (2)

There is a second important way in which T will

modify the observed resonance. The carriers will
have a spread in energy of order kT around the Fer-
mi energy; we wi11 refer to this as the "nonmono-
chromatic" width E„, since this width could arise
from processes other than temperature. It is always
true that kT » hE; thus, even if EF coincides with
a resonance, most of the carriers fall outside the
resonance width and are not transmitted. The ob-
served transmission includes this nonmonchromatic
effect and is given by t„—(SE/E„)t

From Eqs. (1) and (2) the monochromatic
transmission at resonance E =E„) is related to the
nonresonant transmission t„, by

t~ —t„,/p . (3)

The largest possible resonant transmission is obvi-
ously t '"=1;by Eq. (3) the decay probability for
a strong resonance is thus

'"(T) —t 1/2(T). (4)

t„'"—[BE(2LO)/kT]t t (6)

We may transcribe this directly into a formula relat-
ing experimentally measured resonant and non-
resonant conductances:

G, [BE(2L,)/kTiG„', "'. (7)

Although the transition from Eq. (6) to Eq. (7)
may appear perfectly straightforward, it actually
contains an interesting subtlety. In identifying t
with G on the left-hand side of these equations, we
make use of Landauer's formula' G = t. This
T = 0 relation is valid because the physics of con-
duction through the resonance is dominated by the

Since t„, is T dependent (as we discuss below), so is
p. Using Eq. (2), we can also relate the resonance
width to the nonresonant transmission:

SE —B,E (2L, ) t„',i2.

(Note that while the intrinsic width of the resonant
peak is given by SE, the actual observed width can-
not be smaller than E„.)

If we suppose that E„=kT, then the nonmono-
chromatic transmission at resonance (an experi-
mentally accessible quantity) is
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zero-temperature quantum mechanics of tunneling.
On the other hand, the conductance far away from
resonance proceeds via thermally assisted hopping,
according to the ordinary Mott picture. Thus the
statement that G~ t on the right-hand side of (6)
and (7) represents the usual identification of parti-
cle flux with conductance which is made in the
variable-range hopping analysis. 7 So the sample
simultaneously exhibits the extremes of quantum
mechanical and nonresonant behavior. Within the
classical (i.e., hopping) regime, we expect that the
conductance will be given by the usual one-
dimensional Mott formula":

G„, exp[ —(TQ/T)' ], T —AE(2L ). (8)

Through this equation both p [Eq. (4)] and oE [Eq.
(5)] acquire a T dependence, as claimed above.

We may now specify the temperature range in
which this sort of behavior should be observed. It
is clear that the entire resonant picture will break
down, and resonant structure will disappear alto-
gether, when the eigenstate width exceeds the spac-
ing hE(L) between the energy levels of the sam-
ple: SE ) hE(L). Thus from Eqs. (5) and (8) we
obtain an estimate for the temperature T3 at which
resonances disappear: T3 —T /141[in(L/2Lo) ] .
For the parameters given above from Ref. 1, this
gives T3=0.4 K, which is near the temperature
where resonant structure disappears in the experi-
ment. For T) T3 conductance should proceed
purely according to multiple hopping. "

When T & T3, resonant structure will begin to
appear; that is, once a carrier enters a resonant lev-
el, it is likely to remain in it throughout its passage
through the sample. This is so because quantum
mechanical tunneling times are short, ' while hop-
ping times are exponentially long. 7 G„„however,
will continue to obey the Mott law, ' Eq. (8). The
T dependence of the highest resonant conductance
[i.e., of the maximum G(T) over the whole range
of E„]is given by Eq. (7) and is predicted to be

Experiment' is consistent with this prediction. We
have shown the expected behavior of the conduc-
tances at peaks and valleys in Fig. 1 for the various
T ranges described in the paper.

As the figure shows, another conductance regime
is predicted at temperatures below a temperature
T2. This break point occurs when the nonresonant
conductance of Eq. (8) reaches the ultimate low-
temperature conductance:

ln G„c —2L/L o (10)

G„o is determined by ordinary (i.e., nonresonant)
tunneling through the sample4 and 6„, cannot be
smaller than this intrinsic T = 0 conductance. Thus
G„, turns over sharply at T2, whch from (10) and
(8) is given by T2 —To(Lo/2L)2 —4 mK for the
experimental system of Ref. 1. While this T2 is
well below the present experimental range (~50
mK, limited by the electron temperature), it is
perhaps not inaccessibly low, and T2 may easily
differ by a factor of 10 from sample to sample be-
cause of variations of To, L, and Lo. It should be
well worth studying because of the predicted abrupt
change in the valley conductance. By Eq. (7), we
expect that the resonance conductance will also
change abruptly to 6, —T ', a universal, weakly
metallic dependence. This will occur whenever an
eigenlevel is thermally accessible to a carrier. Since
the "nonmonchromaticity" of the carriers is —kT,
the probability P that any given sample is in the
resonant regime is P~ T. Consequently, over an
ensemble of samples the average conductance
(G) —PG '"(T) —AE(2L, )exp( —L/Lo) is Tin
dependent (G) m. ay represent, for example, the

Gmsx~ exp [1(T /T)1/2] (9)

Thus both "peak" and "valley" conductances [Eqs.
(9) and (8)] should be linear on a lnG versus T'i2

plot, although the effective To as deduced from the
slope of these plots should vary as much as a factor
of 4 between the highest peak and a neighboring
valley; this fourfold variation has been found exper-
imentally. ' When all of the resonant peaks, not just
the highest ones, are considered, the theory pre-
dicts a distribution of ratios Tt1"""/Tg""between 4
and 1 such that the random variable ( To"""/
TP'" )'t is uniformly distributed between 2 and 1.
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FIG. 1. The general behavior of G (T) for a valley G„„,
and for a high peak G„ for the three different T regimes
discussed in the text. We schematically indicate the ef-
fective To deduced from Eqs. (g) and (9).
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conductance of a quasi one-dimensional sample
consisting of many one-dimensional channels con-
ducting in parallel.

To conclude, we have presented a theory which
provides a qualitatively accurate description of ex-
isting experimental observations of conductance in

strongly localized quasi one-dimensional systems.
While somewhat speculative, this theory is based on
the physically reasonable concept that the behavior
of 6 is determined by eigenstate tunneling effects
so long as the with of the levels is less than the en-
ergy separating them. We find that the distribution
of temperature parameters To between peak and
valley is correctly predicted by the theory. Also, we
find that for sufficiently low T, G (T) should
change over abruptly to an essentially athermal
behavior.
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