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Chiral Anomaly and the Rational Quantization of the Hall Conductance
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The quantum Hall effect is shown be equivalent to a chiral anomaly in quantum electro-
dynamics. The integers ni and n2 in the rationally quantized Hall conductance g = (e /

2')(ni /n 2) arise from vortex excitations carrying ni electrons and n2 flux quanta. It is

found that n2= 2j, where j = l+ ~ is the angular momentum per electron in the vortex.

This explains the odd-denominator rule n2= 21+ 1.

PACS numbers: 03.70.+k, 72.10.Bg, 72.20.My

The rationally quantized Hall effect' refers to
regions, in gate voltage and magnetic field, wherein
the Hall conductance of the gate of a field-effect
transistor has the form

It is reasonable to assume that charge excitations
arise in integral units of the electronic charge, while
flux excitations arise in quantum flux units. If this
is true, then (in Gaussian units)

g = (e'/2rrt)H, e' = nte, $' = nz(27rtc/e ) (7)

where H is a rational number

H=n, /n, (2)

The purpose of this work is to discuss the physical
significance, and (thereby) the possible values, of
the integers n

&
and n2.

The following model was previously shown to
yield Eqs. (1) and (2). If one supposes an excita-
tion on the Hall surface which carries a charge e'
and a magnetic flux Q', via a current vortex,

ivortex) = ie', P'),

imply Eqs. (1) and (2) in virtue of Eq. (6). A proof
of Eq. (7), for the quantized electrodynamic field,
must obviously proceed via relativistic quantum
field theory. This is evident, if for no other reason,
because high-precision measurements of

n = e'/tc

require a quantum electrodynamic theoretical
framework in the interpretation.

The central feature of the work which follows is

I = e' dN/dt, (4a)

then the flow of such vortices (see Fig. 1) across
the Hall surface yields an easily calculable Hall con-
ductance. The source-to-drain current due to such
vortex flows is evidently

(a)

a&&

~ ~ ~~:~ ~O =~~:O:O~
O =O~O~O

while the voltage due to flux quanta passing across
a curve connecting two Hall probes is determined
by Faraday's law,

b ti

V= Vab

V = (@ /c ) dN/dt (4b)

In Eqs. (4), dN/dt is the number of vortices flowing
across the Hall surface per unit time.

The Hall conductance implied by Eqs. (4),

(b)

is evidently

g = c (e'/@'). (6)

FIG. l. (a) Vortices flowing across a Hall surface at a
rate dX/dt The current is evid. ently I =e'dN/dt, and
the Faraday-law voltage is V = (P'/c)dN/dt (b) Mag-.
netic field lines due to a vortex on a Hall surface of thick-
ness a. The vortex core diameter is given by d = ac/g.
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the notion that the product of the charge and mag-
netic flux of a vortex excitation represents the an-
gular momentum of the vortex (in a Lorentz frame
in which the excitation vortex is at the origin),

The angular momentum J can be computed from
the action in Eq. (17) by first computing the Belin-
fante symmetric stress tensor via the metric. ' For
the problem at hand,

e' t88'/4' c = J', (9) J = ( —a/4mc) J ( r E)B d r (18)

so that the integers n j and n 2 obey the product rule

n tn2= 2J'/&. (10)

Equation (10) will be considered further, after
some quantum electrodynamic considerations en-
tering into the proof of its validity are outlined.

First let us express the definition I = g V as a rela-
tivistic vector relation between a conserved current
vector"

[The method used to derive Eq. (18) is more gen-
erally valid than the construction using Noether
currents which is only sometimes correct. ]

To compute the angular momentum J for a single
vortex at the origin, one can place an external
charge source e' at the origin, and note that the ra-
dial electric field induces a circulating current, and
thus a magnetic field. This can be shown to be
given by

J"= (J„,Jy, cp ), B„J"= 0, (1 la) B'= —(8vre'g/ca )Ko(47rgr/ca), (19a)
and the electromagnetic conserved pseudovector

(g E B) gP/ —() (iib)

in the quantum electrodynamic notation of two spa-
tial dimensions plus one time dimension. The
charge flow is proportional to the magnetic flux
flow, since both are carried by the same vortex
flow, i.e.,

J18 —gf18 (12)

J"=c ob W/5A„,

where 3„is the vector potential, and

(13)

Equation (12) is the local relativistic version of Eq.
(5).

Let a be the "effective thickness" of the Hall
surface and define the "charge" in the (2+1)-
dimensional quantum electrodynamics so that it has
conventional Gaussian units. The Hall-effect action
5 W is derived from the current

where Ko(z) is the zeroth-order modified Bessel
function. ' The "screened" electric field can be
shown to be

E' = (4n g/ca ) ' gradB'. (19b)

The reason for the screened fields given in Eqs.
(19) is that the photon propagator, implicit in the
action of Eq. (17), has grown a "mass, " which (in
inverse length units) is given by

K = 4mg/ca. (20)

From Eqs. (18) and (19) one easily derives Eqs. (6)
and (9). This is what we wished to prove from field
theory.

The angular momentum considerations are now
crucial. For nj electrons in the vortex, it follows
from Eq. (10) that the number of magnetic flux
quanta is given by

(21a)

f„=e„„„B"A "= , e„y„F'". —
5 W can be computed from Eqs. (12)-(14) as

5 W= (g/2c ) J d x f"A„.
The electromagnetic action

Wp= (a/8vrc) fd xf"f„
= (a/8m. c) Jtd'x (E' —B')

(14)

(i5)

where j is the angular momentum per electron,

j = J'/h n t. (2ib)

The Fermi statistics of an electron dictates that

j =l+ —,. (22)

where 1, be it orbital electron or photon angular
momentum, must be an integer.

The central new result of this work is then

W„,= Wp+5 W. (17)

receives an additional Hall-effect contribution 5 W
after path integration over electronic degrees of
freedom, so that the total effective model action of
this work is

n2= 2l + 1, (23)

so that the rational quantizations of the Hall con-
ductance in Eqs. (1) and (2) have "odd" denomi-
nators.

It is physically evident that angular momentum
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arguments require rotational symmetry in the ac-
tion. Thus in laboratory experiments, only "clean"
surfaces should show the rational quantization ef-
fect. The "quenching" of I when impurities are
present might yield only l = 0, or integer quantiza-
tions as observable.

To conclude, we would like to explain the "chiral
anomaly" and its relationship to the quantum Hall
effect, particularly Eq. (15). An easy route to take
starts by noting that in 3+ 1 dimensions we are free
to add to the classical action the term

6W8Jtdt Jtd'r(E B), (24)

+ dG (t)/dt ], (25)

where G (t) is proportional to fd r A B. The
boundaries are those of a capacitor, one of which is
grounded and on which the electric field and scalar
potential vanish, while the other is the gate of the
field-effect transistor.

Apart from the total time derivative of G (which
can be regauged into the quantum electrodynamic
wave function of the field coordinates), Eq. (25)
can be rewritten in the form

hW= —,(J~ d x f A", (26)

where f„is given by Eq. (14). To do this, we make
use of the relations F;0= E; and E» ——83. We final-
ly make contact with Eq. (15) by choosing O=g/c,

where 0 is an arbitrary constant. We are free to add
this term in classical theory, since it does not affect
the equations of motion (Maxwell's equations).

We may now convert the spatial integral in Eq.
(24) to a surface integral over the boundaries of the
condensed matter to obtain

5W= —,'eJtdt[Jt'dX (AxE —$B)

where g is the same quantity as that appearing in
Eq. (6). Thus the classically allowed addition to the
action in 3+1 dimensions, Eq. (24), leads to the
anomaly, Eq. (26), in 2+1 dimensions. '4
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