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The spin van der Waals model may be regarded as an infinite-lattice-dimensional limit. of
the spin-~ anisotropic Heisenberg model. By solution of the generalized Langevin equation,
time-dependent behavior is obtained. The geometry of realized Hilbert spaces lends a simple
interpretation for critical dynamics.
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Certain statistical mechanical models are exactly
solvable at some special limits, providing useful in-
sight into the behavior of these models. For exam-
ple, when the spin dimensionality in the classical
Heisenberg model is made infinitely large, one ob-
tains the spherical model. ' The static behavior of
this model is well understood and has been useful
for understanding critical behavior. '

Consider the spin- —,
' nearest-neighbor (nn) aniso-

tropic Heisenberg model on a hypercubic lattice of
dimensionality D,

H = —x XJtj (D)s; sI,

where o. =x,y, z. An infinite-lattice-dimensional lim-
it (D ~) of (1) is the spin van der Waals
model. 4 Statically this limit is uninteresting since
the model should behave in a mean-field fashion.
However, it may qualitatively describe the time-
dependent behavior of the quantum model in finite
lattice dimensions. Other than in D = 1 at T = 0 or
T ~, the time-dependent behavior of (1) is not
exactly known presently. We provide here the
nonequilibrium behavior of the spin van der Waals
model by solving the generalized Langevin equa-
tion.

The problem of time evolution in (1) for, e.g. ,
the total spin S = $~,s; is defined by the gen-
eralized Langevin equation:

p(
dS.(t)/dt + J,dt' P.(t —t') S.(t') = F.(t),

where F and $ are, respectively, the random
force and memory function. According to the
method of recurrence relationss one constructs a d-

dimensional Hilbert space Wot+ for S spanned by
orthogonal basis vectors of fo,f&, . . . , fd &. For
statistical mechanical problems generally, P'at+ is
realized by the inner product,

(x Y) =p 'j dx (e~"xe ~ r) —(x) iY),

for g and Y C&at ~, where P = 1/kT, (XY)
= Tr(g Ye pH)/Tr(e pH). The orthogonal basis
vectors for this space have the property that they
are connected by a recurrence relation5

f.+i=f.+~.f. (2)

where f„=i [H,f„] and 5„=(f„,f„)/(f„,,f, &),
referred to as the p th recurrant. Then
S (t) = gd ota„(t)f„, F (t) = gd &'b„(t)f„, $ (t)
=b, tb&(t), where a„'s and b„'s are autocorrelation
functions describing relaxation and memory,
respectively. The two families are related by a con-
volution a„(t) =conv. Iao(t) 'b„(t)), v ~ 1. Both
functions must satisfy an identical recurrence rela-
tion, e.g. ,

b, „+)a„+,(t) = —a„(t)+a„)(t),
where a„=da„(t)/dt, 0 ~ v ~ d —1.

We take the limit D ~ in (1), i.e., the spin
van der Waals model form with J,", (D)
= JJ(D) = J/N and J~(D) = J,/N, where J and J,
are nonnegative. Then for fo S„, i.e. , u=x, we——
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obtain, using (2),

fi= —2coS,Sy, f2= —4m S, S„+AtS„,

f3 8co——S, Sy —2(hz+ 6))o)S,Sy,

f4
= 16') S, S„—4 (b 3+ b 2+ 5 ) ) (o zS,2S„

+ 535)S„,

etc. ,6 where t0 = (J —J, ) /N and t = 1.
To evaluate the norm (f„,f„) of f„explicitly,

one needs to know the ensemble averages of spins
which appear in the inner product. 5 Thus the
evaluation depends on whether J & J, (XY regime)
or J & J, (Ising regime) and also whether T & T,
(high temperature) or T & T, (low temperature).

XY regime. For —T & T, = J/2k, it was shown7

that

(S,'"S') = (S'")(S').
(S'") = (2v —1)!!(S,')",

v = 1, 2, 3, . . . ,

where (S,2) = —,
' N/(2 —PJ,) and (S„)= —,

'
N/

(2 —pJ). Using these results and retaining only the
leading terms of N, we obtain (f„f,)
= (S„2).7 Hence the v th recurrant is b, „
= v (4' (S, ) ) = vA, v ~ 1. The upper limit on v is
unbounded. Hence d
v is unbounded. Hence d

For T & T„ there now exists an ordered phase,
i.e, (S„)=O(N). However, the same form of
decoupling is still valid provided that one substi-
tutes (S,') = —,'N/p(J —J, ) and X= (S„') —(S„)'.
Thus the norm of f„for T & T, has the same form
and the structure of recurrants is consequently
identical whether T is above or below T, .

Ising regime For T &.—T, = J,/2k the Ising and
XY static properties are identical. 7 Hence one also
has 6, = vA for the high-temperature Ising regime.

For T & T, the ordered phase is characterized by

(S,) = 0 (N). Although still (S, "S„)= (S, ")
x (S„2), one now has4 (S, ") = (S,) ". Using it, we
find that (fp fp) = X and (f,,f, ) = 4o)'(S, ) 'X.
Hence 6, = 4co2(S, ) 2= 02. Using these results, we
see that (f2,f2) =0. Hence also b, ~=0. A more
careful analysis shows that (f„,f„)= 0 (N) if v = 0
and 1, but (f„,f„)= 0 (N ') if v ~ 2. This
behavior of the basis vectors implies that the d-

dimensional Hilbert space Xptdl becomes effectively
reduced to a two-dimensional space, i.e. ,

=g g ~, where X is a two-
dimensional (2D) space spanned by fp and f, , and

2~ is a (d —2)-dimensional subspace spanned
by f2, . . . , fd &. The time evolution of S„ is con-

fined to the 20 space S 0 at all times. It does not
extend into the subspace g2td 2l. In this 2D space
there is only one recurrant, 5

&
——0 . This is in con-

trast to the high-temperature Ising regime, where
the time evolution of S„extends into an infinite-
dimensional space.

Given the structure of recurrants, the recurrence
relation (3) can now be realized. For the XY and
high-temperature Ising regimes, we have

(v+1)ha„+~(t) = —a, (t)+a„~(t), (4)

0 ~ v ~ ~. The recurrence relation is satisfied by

a„(t)(t'/v!)exp( —,
' At—),

where 5'i2 will be referred to as the basal frequency
Using (5) we can now obtain b„by solving the con-
volution equation for b, .

For the low-temperature Ising regime, d = 2 and
b, , = Az only. Thus, the recurrence relation (3) as-
sumes at(t) = ap(t), II'a~(t) = —ap(t). Hence
ap(t) =cosset, a~(t) =sinAt/0, where 0 is now
the basal frequency. From the convolution equa-
tion, we have b t(t) = 1 for all times.

Viewing through the realized Hilbert spaces, we
see that the time evolution of S„ traces a trajectory.
In the XY and high-temperature Ising regimes, the
trajectory is spirallike, starting from the basal vector
fp and winding towards the highest vector f„
In the low-temperature Ising regime, the trajectory
can only be rotational, being confined to a two-
dimensional space. These trajectories can be re-
garded as being drawn out by the random force
which may itself evolve in time. In the XY and
high-temperature Ising regimes, the trajectory of
the random force is also spirallike, starting off at f&.

Hence it continuously draws S„ into higher reaches
of the Hilbert space. In the low-temperature Ising
regime, the random force lies in a one-dimensional
manifold and is stationary at fr. As a result, S, is
not pulled out of its two-dimensional confine.

In Figs. 1 and 2 we illustrate the a„'s and b„'s for
the XYand high-temperature Ising regimes as func-
tions of time. The temperature and interaction
symmetry enter into these autocorrelation functions
through the basal frequency b, ' 2=2(&u~ (S, ) ' 2.

What is shown in, e.g. , Fig. 1 is the distribution of
projections of S„(t) onto various basis vectors. The
distribution rapidly shifts with time from the basal
vector towards higher vectors. The random force
appears to have a similar distribution, indicating
that on the high-temperature side there is but one
time scale in the system. In Brownian theories it is
usually assumed that there are two distinct time
scales, one for the relaxation functions, a„'s, and
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FIG. 1. Relaxation functions a„(t) vs time at T & T,
in the XY and Ising regimes. The time is given in units
of &' '=2i«&i(S')' ' a, (t) = (S„(t),S„)/(S„,S„), at(t)
= (S„(t),S„)/(S„,S„),etc.

FIG. 2. Memory functions b„(t) vs time at T & T, in

the XY and Ising regimes. The time is given in units of
b„(j)'s are related to a„(t)'s via a convolution:

a„(t)= f dt' a p(t —t')b„(t'), v ~ l.

another for the memory functions, b, 's.
In Fig. 3, the spin-velocity autocorrelation func-

tion i& is compared with ao and bi. The behavior
of Q 0 and a

&
is strikingly similar to what Windsor

found by computer simulation for the simple-cubic,
nearest-neighbor classical Heisenberg model at high
temperatures. Also our result for ao resembles the
computer-simulated long-wavelength high-temper-
ature relaxation function for the one-dimensional
Heisenberg model. ' The resemblance suggests
that high-temperature spin dynamics is not overly
sensitive to the large-dimensional limit that we
have taken.

The behavior of the basal frequency as T T,
determines the nature of critical dynamics. Critical
anomalies are indicated by accompanying changes
in the structure of the Hilbert space Hp(di. For the
XY regimes, the basal frequency is
= 2[«pi(S, ) ', where (S, ) = —,'N/(2 —pJ, ) for
T & T, and (S, ) = ,'N/p(J —J,) for —T( T, .
Since J & J, and p,J = 2 for the XY regime, the
basal frequency remains finite as T approaches T,
from above or below. Thus there is no critical ano-
maly associated with the time evolution of S„ in the
XY regime. The structure of +otd) is unaffected by
T crossing T, .

For the high-temperature Ising regime, the basal
frequency is the same as that for the high-
temperature XY regime, but it can now diverge be-
cause p,J, =2. Hence as T T,+, the trajectory
spirals more quickly towards higher dimensions in
an infinite-dimensional space. For T & T, the basal
frequency is 0 = 2 imp i (S,), which vanishes as

T T, . Thus the rotational trajectory in a two-
dimensional space is slowed down as T T, . The
time evolution appears to show two types of critical
dynamics. What is evidently being manifested is
that the two sides of T, enjoy vastly different time
scales. On the high-temperature side, the time
scale is of order N', " whereas on the low-
temperature side it is O(1). As, e.g. , T T,+, the
two time scales must match up at T, . They ap-
parently do so by speeding up of the spiraling trajec-
tory. In the process the spiral forming in an

0.5

FIG. 3. Spin-velocity autocorrelation function ai(t)
compared with ap(t) and bt(t) at T & T, in the XY and
Ising regimes. The time is given in units of
at(t) = (S„(t),S„)/(S„,S„).
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infinite-dimensional space "tumbles" over into a
two-dimensional space as T crosses T, from above.
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