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Fractal Geometry and Brownian Motion: A New Parameter
to Describe Molecular Motion
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The lengths of molecular trajectories in an argonlike liquid simulated by molecular dynam-

ics have been found to be fractal over a substantial range of scales with a Richardson coeffi-
cient of u = 0.65 (Mandelbrot dimensionality of tl = 1.65). The results obey a simple empiri-

cal relation with three parameters. We believe o. to be a useful new parameter to describe the
form of trajectories of molecules in fluids where none has previously been available, and that
it is a state function.

PACS numbers: 05.40. +j, 61.25.Bi

The idea of fractional dimensionality goes back at
least to Hausdorff. ' It was in effect applied to the
analysis of coastlines, etc, , in a seminal paper by
Richardson2 and has recently been popularized by
Mandelbrot's provocative book. It is currently an
attractive idea because it is a scaling phenomenon
which may relate to Widorn's scaling hypothesis
and Wilson's renormalization group5 which are
finding wide application in theoretical physics. This
has made respectable the use of nonintegral dimen-
sionality in physical science.

Mandelbrots discusses the application of fractal
geometry to Brownian motion and even devotes a
whole chapter to this topic. However, the connec-
tion between his analysis of mathematical models
and the Brownian motion of molecules in real or at
least realistic liquids is not very clear.

It is not yet possible in an actual experiment to
follow the trajectory of a molecule in a real liquid in
detail. We therefore utilize a computer simulation
of a "typical" liquid in circumstances in which it is

known that this is a realistic model of an actual
liquid such as liquid argon. We give only a few
parameters of the simulation since it is quite con-
ventional.

The intermolecular potential chosen was a central
pair-wise Lennard-Jones 12-6 interaction potential
cut off at a distance r = 2.5o-, where o. is the length
parameter in the potential and is effectively the di-
ameter of the molecule. We used 108 molecules
with cyclic boundary conditions, a reduced density,
po-'=0. 65 (p is the number density), and a re-
duced temperature, kT/e=0. 93 (e is the energy
parameter in the Lennard- Jones potential; we
reserve the usual symbol, e, for the scale, see
below). This is a typical liquid state about halfway
between the triple point and the critical point and
moreover is on the coexistence line so that the
pressure applied to the liquid is the vapor pressure. 7

The time step was 0.1 Verlet unitss which corre-
sponds, for the parameters for liquid argon, to
about 10 '4 s. In the simulation we ran for 600
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steps for equilibration and then for 5000 steps, the
latter being much longer than the characteristic
time for changes in the particle velocity, about
10 '3 s in this case. We recorded the trajectory of a
particular atom and analyzed it for possible fractal
properties.

It will be recalled that a fractal curve has the
property that if one measures its length, L (e), us-
ing a scale, i.e. , a step distance, e, then

L(e)~ e

where n is a constant, at least for a set of particular
values of e.

We employ here Richardson's empirical notation
since it is n which is actually measured. Mandel-
brot advocates that n should be regarded as d —dT
where d is a fractal dimension and dT is the topolog-
ical dimension. dT=1 for our trajectories so that
d = 1+n here.

An example of a fractal curve is the Koch curve,
K, illustrated in Fig. 1, which we shall use later.
For E

n = (ln4/ln3) —1=0.2618. . .,
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results in the manner of experimental results, in
equal increments of —log2(e/o. ), which is con-
venient and appropriate. We have a program which
measures L (e/a ) for any value of e by stepping
along the trajectory as if with a pair of dividers. We
take the trajectory between simulation time steps as
straight lines but our time step is so short that this
is entirely justified (see Fig. 2). We include end
corrections which are fractions of e as recommend-
ed by Richardson.

The result is shown in Fig. 2. For a large range of
e, about 24, we get a quite good straight line with a
slope corresponding to a = 0.65. For large values of
e (note that e decreases to the right in the figures)
we get the end-to-end distance, L„which on the
average will be near the root mean square distance

provided e = 1/3, where 1 is the end-to-end length
and m is an integer. K is a continuous nondif-
ferentiable curve of infinite length, as is the quan-
tum path of a particle. 9 In this paper, however, we
consider only classical mechanics.

We proceed to analyze the molecular trajectory,
after of course compensating for the discontinuities
which arise from the use of cyclic boundary condi-
tions. This "stretching" procedure is familiar to us
in the determination of the self-diffusion coeffi-
cient, D, from a simulation. Since the trajectory is
presumably continuous we regard e as a continuous
variable as is L(e). However, we present the
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FIG. 1. The fractal Koch curves for which
L(e/3) —(4/3)L(e) for e/1=1/3 . n= (ln4/ln3) —I,

i.e., d = 1.2618. . . .
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FIG. 2. Fractal analysis of the trajectory of a molecule
in a typical liquid, from a computer simulation, circles.
L (e/a ) is the length measured by stepping along the tra-
jectory with "dividers" set at e/a. . Note: e/a diminishes
from left to right by a factor 2 for each unit. L, is the ob-
served end-to-end distance whose root mean square
average over many trajectories would be L,. The mean
contour length, (L,), depends only on the temperature.
Also indicated is the mean value of e for one step of the
simulation, e„and also the mean distance travelled for
loss of correlation of the particle velocity, e„. For a gas
the latter would be the mean free path. The best straight
line through the quasilinear part of the plot yields a value
of Richardson's parameter of o. = 0.65. Also given is the
corresponding plot of the first half of the same trajectory.
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between the two ends of the trajectory, L„which,
for these relatively long trajectories, is simply

We have measured the diffusion constant, D,
although in fact Verlet's empirical formulas is quite
adequate. For various particles and different trajec-
tories (see below) there is of course a considerable
statistical fluctuation of L, about L,

For e small enough L (e) approaches the contour
length, L, Thi. s is immediately estimated from

ry starts to be appreciably smooth is given by

e„= (u)7„,

where r„ is the correlation time of the molecular
velocity. r„ is immediately obtained from D since
r„= (m/kT)D. This scale is marked in Fig. 2 and
is, as expected, at the knee of the curve. For a gas
e„ is virtually the mean free path.

We find that the curve in Fig. 2 is given with re-
markable accuracy by the empirical relation

where (u) is the mean molecular speed which is
determined by the temperature and the mass of the
molecule. In reduced units it is independent of the
mass of the molecule. Of course the actual contour
length for any particular trajectory, L„ fluctuates
about the mean vlaue but the fluctuations are rela-
tively much smaller than for L, .

Clearly the trajectory is not fractal for small
enough e. It becomes effectively smooth, however,
well before e is the mean step length of the simula-
tion, e, ; see Fig. 2. We have verified that the tra-
jectory really is smooth because the plot in Fig. 2 is
not affected if we use a computational step length
one half as long or if we use only alternate points of
the original trajectory.

We can guess that the scale at which the trajecto-

We have also analyzed shorter trajectories for the
same thermodynamic state, in fact parts of the tra-
jectory used for Fig. 2. For the trajectories for steps
1-2500 (see Fig. 2), 2501—5000, 1—1250, 1251—
2500, etc. , the plots are indistinguishable from that
in Fig. 2, after a vertical shift to compensate for the
change in L, . For the trajectories 1—625, etc. , the
plots are quite noisy and begin to diverge from Fig.
2. In any case such plots are clearly too short. The
"gap" between L, and L, falls as N'

It appears therefore that the fractal coefficient, n,
and the form of the curve given above are indepen-
dent of the trajectory length as long as one can
reasonably make a plot such as Fig. 2. Only two
parameters are required given the form above and
the temperature: the self-diffusion constant which
is trivial, and the fractal coefficient, n. Thus u is a
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FIG. 3. A randomized Koch curve of order 6 analyzed

as if it were a molecular trajectory. The apparent value of
n is 0.25 whereas for K it is 0.26. . . provided e/I
=1/3™.Compare with Fig. 2, but note the change of
scale of abcissae.

FIG. 4. Analysis of a randomized Peano curve of or-
der 12 with 0=99.1135' for which n=0.65. This curve,
after translation of the axes, can be superimposed on the
curve of Fig. 2.
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new parameter for describing molecular motion in a
liquid.

Mandelbrot3 states (p. 15) that for Brownian
motion, d = 2, i.e., n =1, which is clearly not the
case here. For reasons obsucre to us he uses the
model of the Peano curve (see below) with 0 hav-

ing the critical value 90'. However, our results sug-
gest that molecular trajectories undergoing Browni-
an motion are fractal to finite order, in the sense
that at small enough scale they become smooth
curves, as surely must be the case if we believe in
Newton's law of motion.

In view of Mandelbrot's strong feelings about
nomenclature we suggest with trepidation that our
curves be called "finite fractals. " In illustration of
this point of view we have analyzed a Koch curve
for n =6, i.e., 4096 steps, as if it were a molecular
trajectory using our computer program just as we
did for Fig. 2. The result is shown in Fig. 3. This
bears a striking resemblance to Fig. 2. The best-fit
line to the straight part gives n=0.25 which is
within "experimental error" of the value, 0.262,
which is for e/1=1/3 . The exact result for any e

is extremely complex so our result has "Laplacian"
randomness. We have also randomized a E6 curve
by placing the triangles to the left or right at ran-
dom at each stage of development, K &,

K2, . . . , K6. The "experimental result" is then
even more similar to that in Fig. 2. Indeed the
curve itself is very similar to the real trajectory.

Finally, we have used as a finite fractal curve a
randomized Peano curve of order 12 with 0
=99.1135 (Fig. 4), which gives n=0.65. The

shape of the analyzed curve is indistinguishable
from that in Fig. 2 after suitable bodily translation
which is permissible because of the arbitrariness of
the scales. On the other hand the curve bears little
apparent resemblance to the actual trajectory.

We have also looked at the trajectories of
molecules in gases and crystals but we defer discus-
sion of these to another place.
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