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Interface Motion and Nonequilibrium Properties of the Random-Field Ising Model
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The dynamics of a continuum interface model in a random medium are studied and the
results applied to the random-field Ising model. We find that if the dimensionality d & 5, the
interface will move only if a force beyond a finite depinning threshold I', —h ~" is ap-

plied, where h is the random field strength. Thus, when the random-field Ising model is
quenched to low temperatures, there is a critical value R, —I/h~ ~~ d~ for the average radius
of curvature R of the domain walls. If R )R„ the domain structure is frozen. If R & R„
the domain structure evolves until R —R, .

PACS numbers: 75.40.Dy, 05.50.+q

It is well known that random magnetic systems
relax slowly, if at all, towards equilibrium. The
most common examples of such systems are spin-
glasses, which display unusual hysteresis when the
temperature and applied fields are varied. ' Recent-
ly, similar phenomena2 3 have been observed for di-
luted Ising antiferromagnets in uniform fields. 2

If a field is applied after cooling below the Neel
temperature TN, long-range antiferromagnetic
(AFM) order is maintained. On the other hand, if
the sample is cooled through TN in a field of the
same strength, AFM order is never established.

Diluted Ising antiferromagnets in uniform fields
are believed to behave like pure Ising ferromagnets
in site-random fields. s Domain-wall argumentss
suggest that for low temperatures, small random
fields destroy long-range ferromagnetic order only
when the spatial dimensionality d ~ 2. This result
is in seeming contradiction to the neutron-
scattering data obtained upon cooling antiferromag-
nets through TN in a field. s 4

In this Letter, we consider the nonequilibrium
behavior of the random-field Ising model in a uni-
form field conjugate to the order parameter. We
find depinning phenomena analogous, but not

identical, to those associated with type-II supercon-
ductors and charge-density-wave compounds. Our
study leads to the conclusion that for d( 5, the
random field prevents the growth of an ordered
state after a quench to low temperatures from the
paramagnetic regime.

The standard theory for the growth of a stable
phase after a quench through a second-order transi-
tion is due to Lifshitz, and has been refined by
many authors since. 7 In this theory, one studies the
motion of a single wall between domains of opposite
spin polarity. The mean radius of curvature R for
such a wall is then identified with the correlation
length g for the entire many-wall system. General-

ly, 8 grows with time t according to a r' 2 law.
Computer simulations and more elaborate theory
bear out the conclusion that ( obeys the same sim-

ple growth law.
We now generalize the Lifshitz theory to take ac-

count of random fields. An interface between
domains of opposite spin polarity is defined by a
profile y= f(x, t) where x belongs to a (d —1)-
dimensional hypercube with side length L. As usu-
al, overhangs are neglected, so that f(x, t) is a
single-valued function. The energy of the inter-
face, when treated as an elastic membrane, s is

E(f) =
2 J& d x~'7f

~ +2J[d xJ f(x) dz h(x, z).

In (1), J is the exchange constant. The random-field variables h (x,z) at each site (x,z) are independently
selected from a Gaussian distribution with zero mean and mean square b, . In the presence of a uniform driv-
ing force Fper unit area, the equation of motion for the interface is

&.f(dr = F SE(f)/of = F+ I'72f— 2h(,f(,r)). — (2)

In simple ferromagnets, Fis a uniform field applied in addition to the random field. More generally, F
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corresponds to the free-energy difference between
the two phases bounding the interface.

Equations (1) and (2) define a continuum inter-
face model, and the quantitative conclusions of this
paper are valid only insofar as such a model is valid.
The continuum description is certainly correct for
magnets where the lattice constant is substantially
smaller than the interfacial width determined by

magnetic anisotropy and exchange energies. Fur-
thermore, at a qualitative level, the nonequilibrium
behavior of the random-field Ising model, like its
equilibrium properties, s should be independent of
whether a discrete or continuum description is
used.

It is convenient to study the following, lattice-
regulated, version of Eq. (2)9:

d —1

Qf//Qt = F+ (j/bo) X Q Q f+ 2(Q / /b(d )/ )e(xk f). (3)

The continuum has been replaced by a (d —1)-
dimensional grid of points xk with lattice constant
bo, 6 denotes the lattice difference operator, and
e(xk, z) is a random variable selected from a
Gaussian distribution with unit variance. We are
interested in the solutions of Eq. (3) for long times
t, given that at t = 0, the interface profile is
f(x, t=0) =0. Characterizing these solutions is
easiest in the (i) weak-coupling (J=0) and (ii)
strong-coupling (J=~) limits. In case (i), (3) be-
comes a set of decoupled, one-dimensional equa-
tions of motion, ' one for each xk. The qualitative
nature of the solutions depends strongly on the
magnitude of the driving force. For any F, we
know that for a finite fraction p of the sites (xk,z),
F h(xk, z) &—0. The mean distance (f) that the
wall will travel as t ~ is then the mean distance
between such "trapping" or pinning sites:

identify a length scale lo such that for distances
larger than lo. the system behaves as if J= 0, while
for distances small compared to lo, the behavior is
that of the rigid interface. To implement this, we
note first that because (3) is. linear in F, J/bo, and
5' /b ' / the depinning force F, (/5. ,J) must
satisfy

F, (A,J)
(gl/2/b (d —1)/2) F((J/gl/2) b (d-5)/2 ) (5)

F(x) is an undetermined function, which ap-
proaches a finite value in the weak-coupling
(x 0) limit, and converges to zero as x

From Eq. (3), we see that the interface width,
which represents the typical deviation of f( x k, t )
from its mean value established over an area ld

is bounded by
(4)

(g 1/2/ J) l(5 —d)/2 (6)
Note that if p & —,', which occurs when F & b, ' 2,

the interface is expected to move less than one lat-
tice unit. Thus, Eq. (4) describes two regimes. In
the first, where F & 5', the typical interface is
pinned at its initial location. In the second,
ht/2 & F, and the interface ordinarily moves a finite
distance before it is pinned.

We turn now to case (ii), the strong-coupling
(J=oo) limit, where the interface remains flat
throughout its motion. Again, the equation of
motion is the one-dimensional version of (3). We
thus expect the same pinning phenomena as
described above for J=0. However, the relevant
random-field variables are the averages of
(L/bo)d ' random variables h (x,z). The strong-
pinning regime where (f) =0 is therefore bound-
ed by F, =5' L ' rather than by F, = 5'
Note that in the thermodynamic (L ~) limit, F,
vanishes.

The formal identity between the weak- and
strong-coupling cases suggests that it is possible to
interpolate between them. The essential idea is to
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Thus, for d & 5, the interface becomes smoother
with rescaling, while for d & 5, it becomes coarser.
In other words, for d & 5, we are always in the
strong-coupling regime, and an infinite interface
moves rigidly for all F & F, =0. For d & 5, the in-
terface is essentially flat (wt & 1) for length scales
less than /0, where

( (gl/2/J)2/(d —5)

This means" that for b & lo, we are allowed to re-
place f(x, t) in Eq. (3) by its local average over
areas bd '. The difference equation (3) can then
be studied on a grid with lattice constant b instead
of bo Now, if b is t.aken to be a fixed fraction of lo,
the scaling form (5) yields

F —pl/2(pl/2/ J) (d —1)/(5 —d)

Figure 1 illustrates the physical origin of the
nonzero F, for d & 5. The random field acting on
the wall [as, for example, used in Eq. (3)] is de-
fined as the random field at the site to the right of
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FIG. 1. Effect of roughness on interface motion. The
plus and minus signs refer to the polarity of the local ran-
dom fields. A force Fper unit area is acting on the inter-
face. All spins to the left of the interface are "up" and
all spins to the right are "down. " For the flat interface
(dotted line), the excess of pinning sites, where the local
fields are negative, is less than for the rough interface
(solid line) .

/g2/(5 —d)

Let R be the average radius of curvature of all the
domain boundaries in a sample. If we prepare the
random-field Ising model in a domain-wall state
with R = Rp and R p )R„ then R will remain close
to Ro. However, if Ro is less than R„R will grow
with time, by droplet collapse and interface erosion,

the wall. If we attempt to move a flat wall, the full
driving force FLd ' is available to overcome the
net interfacial random field, which is of order

L ' . On the other hand, if the interface is
allowed to roughen as it moves, it will move even
while some of its segments cannot advance because
of the associated gain in energy. Eventually, all of
the segments will cease to move. The entire wall is
then pinned, and can only be dislodged by a force
whose density remains finite when L

Now we apply the result (8) to the problem of an
Ising ferromagnet quenched to a low temperature in

a random magnetic field. As noted above, this
problem is generally7 reduced to that of the collapse
of a single antiphase droplet with mean radius of
curvature R. The driving force per unit area is7

a-/R, where o- is the surface tension of the pure
Ising model. If o-/R & F, (J,A), the droplet will

collapse; if o-/R & F,(J, b), the droplet remains
"frozen. " The critical radius of curvature R, is

until it reaches R, . The identification of F, with
o./R, is self-consistent as long as the roughness wI

on the scale I = R, is considerably smaller than R, .
This translates to the condition R,~' " ~& 1,
which is satisfied for d & 1.

The theory we have described has the following
implications for dilute antiferromagnets in uniform
fields H: (1) If the system (with H A 0) is
quenched to low temperatures from a state with
correlation length R =Rp& R„R can only grow,
and it will grow until it reaches R, . (2) Once the
system has been prepared as in (1), changing H or
cr (by changing T) will only lead to an increase in
the correlation length. In particular, if H is re-
duced, R will decrease to a value which it will main-
tain even if H is subsequently increased again. (3)
If Ro « R„ the interfaces will be smooth on the
scale R„and the neutron-scattering profiles S(Q)
will essentially be the squared Fourier transforms of
spheres. '2 Thus, for large Q, S( Q) —Q if
d=3, and S(Q) —Q

3 if d=2. (4) For d=3,
while if d=2, R, —H . (1)—(3)

have all been observed in neutron-scattering experi-
ments3'~ and recent computer simulations. '
Furthermore, in some three-dimensional systems, '
the inverse correlation length K indeed increases ac-
cording to an H2 law, in agreement with (4). In
others, K increases less rapidly, i.e., according to a
power law H" where v & 2. For the two-
dimensional magnet Rheo„Mgl „F4, experiment14
gives ~ —H, in disagreement with (4). At the
fields over which this law was established, the tem-
perature T also enters in a nontrivial way. Howev-
er, for the lowest fields considered, T does enter in
the simplest possible manner: K is the sum of a
field-independent thermal spin-flip probability and
a temperature-independent function of H. We con-
sequently expect that higher-resolution measure-
ments at small fields will reveal the ~ —H
behavior given by our theory.

By studying the motion of interfaces in the
random-field Ising model, we gain understanding of
experiments performed on random antiferromag-
nets in uniform fields. The same theory also has
consequences for other problems. In particular, it
can account for hysteretic behavior near certain
first-order transitions, '6 and depinning phenomena
in reentrant spin-glasses. '
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