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Solitons in Superfluid 3He-A: Bound States on Domain Walls
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The effects of solitons on the spectrum of fermion excitations in superfluid He-2 are in-
vestigated. It is found that there is a two-dimensional manifold of bound states with energies
within the gap of the bulk super fluid. The bound-state spectrum lacks inversion symmetry
parallel to the wall.

PACS numbers: 67,50.pi

There is considerable interest in broken-
symmetry fermion systems exhibiting topological
soliton excitations. It has been shown that the
phenomenon of topologically generated fermion
bound states is quite general. For example, in rela-
tivistic quantum field theories and in quasi-one-
dimensional conductors2 there are zero-energy fer-
mion states bound to the soliton, which thereby ac-
quires fractional or even irrational fermion number
depending on the ground-state degeneracy of the
system. 3 ~ Fermion bound states also exist in vor-
tices in type-II superconductors, 5 where the vortex
singularity provides the trapping potential. On the
other hand, in the case of superfluid 3He, where
there are nonsingular topological solitons, it is not
obvious whether all (or any) of them bind quasipar-
ticles.

In this Letter, we study the quasiparticle bound
states associated with planar solitons in 3He-A. We
find that the spectrum of bound states has many
branches which are confined to a two-dimensional
manifold in momentum space. The spectra have
some features similar to those of charge-density-
wave (CDW) systems, 2 in that for certain values of
the momentum there is a zero-energy bound state.
We also find that there is a lack of inversion sym-
metry of the bound-state spectrum in momentum
space.
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3He-A is a p-wave BCS superfluid consisting of
Cooper pairs with unit orbital angular momentum
along an axis l. These are spin triplets (parallel spin
pairing) which can be regarded as a state having
spin perpendicular to an axis d.6 The excitation
spectrum has an anisotropic gap A(p) = [1
—(I P)2]' 2h at the Fermi level

~ p ~

=pF. Unlike
the CDW and relativistic theories mentioned above,
the condensate field of 3He-A is a tensor (in spin
and orbit space) rather than a scalar. 6 As a result,
there are many types of solitons in 3He-A.

In the following, we consider a simplified version
of the "composite" soliton. 7 It is a planar structure
where d is uniform and l rotates through an angle
7l' —28p as one moves from —~ to +~. The
width of the soliton is fixed by the dipolar force and
is of order 1 itt, m.

To understand qualitatively why bound states ex-
ist at all in composite solitons, consider the case in
which Op = 0 and l rotates continuously from —y to
x to y in the x-y plane as z varies from —~ to 0 to
+ oo, with b, hp 5+. Near z = 0, where
l = x, the "local" excitations traveling nearly along
the x direction with ~p ~

=pF will have energies
E(p) ( ~Ap(p) ~

( (b, q(. Since these states lie in
the forbidden region of the spectra at + ~, they
form bound states around z = 0.

Consider the time Fourier transform of the
Gor'kov-Nambu equations for p-wave superfluids:

1
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G „(r, r ', t) = —i ( TQ„( r, t)Q„( r ', 0)),
F„„(r, r ', t) = —i ( TP„( r, t)P„( r ', 0));

hp= ( —'7 /2m) —p, , and p, is the chemical poten-

hp
H(rq r ) g+( ~)

where G, F, and b, are spin matrices; G~„(to) and

F„„(cu) are time Fourier transforms of the Green's
functions

(2)

tial. The gap function is given in terms of the two-
body potential as

5„„(r, r ') = —V( r —r ') (y~( r )y„( r ')) .

In the A phase, when the spin variable is a constant
(say, d =y in the conventional notation), 6 we have
b,„„(r, r ') =b, ( r, r ')h„„[b,( r, r ') = —5( r ',
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r )]. The quantities G, F, and 5 in (1) and (2)
then become scalars describing the parallel spin
pairing. The Green's functions G and Fcan be con-
structed from the eigenfunctions of H.

For a spatially varying 5, the integral equation
HX = EX is difficult to solve. Considerable simpli-
fication can be made if we focus on the excitations
near the Fermi level. The spatial transform of the
gap function can therefore be approximated by8

J d rh(R+ r/2, R —r/2)e

=i(b/pF)p P(R), (3)

where g(R) = w~(R)+ iwz(R) (wt hz=0, wt
= wz = 1) is the local order parameter, and
l= w&& ~2 is the "angular momentum" texture.
With (3), the integral equation HX=EX can be
written as

(E„—h, )u„=(a/p„)(-'V j+j V)~ (4)

(E„+ho)u„= —(5/pF)( —,
' 7 $"+P' 7)u„, (5)

where X = (u„,u„). We search for solutions of the
orrn

(u„,v„)= [u„(z),u„(z)]e'"' "

For bound states, u„o and v„decay as exp( —K+ lz I)
as lzl +~, with K q' of order of the coherence
length (O=pF/~mA, which is large compared to
pF '. Thus, for bound states or scattering states
near the Fermi surface we neglect terms of order

$0 'pF = 10 and Eqs. (4) and (5) become

(u v ) v v ( v u )p v v
(10)

It is essential to realize that the physical excitation
spectrum is given by the positive eigenvalues
E(p) & 0, while the negative eigenvalues
E( —p) ( 0 correspond to the energy lowering
when an excitation of momentum + p is destroyed.

Because of Eqs. (9) and (10) we consider only
the case p Z~ 0. Defining )=z/$0, it follows that
(p,/m)ri, =p zhB&, and Eqs. (6) and (7) become

(E+ 1)a = [tlt+ F($) ]b, .

(E 1)b = [ ——Bt+ F(f) ]a,

where

E(p) =P zhE, F(f) = (P wt)/(P z), (12)

with a = uo+ uo, b = —i (uo uo). —From Eqs. (11)
one obtains

1 r

2 2
V

(E —1) b
= —

.8('+ ~ b,
j

(13)

Equations (6) and (7) have solutions with the
formal symmetry

E( —p) = —E(p),
(u, ) -„=( ', u ")-,.

()
In addition, for P given by Eq. (8), there is the ad-
ded formal symmetry

E( p. ——p, ,p, ) = —E(p.,p, ,p, ),

[E„+i (p,/m) ti, ev ] u„'—

=(6/pF)(T~'7 P+iP p)u,',

[E„—i (p,/m)B, + ev )u„'

= —(6/pF ) ( —,
' 6 g'+ i P' p ) u„',

(6)

(7)

where V, tt, ) =F + ( —) tl&F.
For a sharp wall one finds the remarkable result

that a physical excitation exists only for p„& 0, with
pz=pFz, and has energy

(14)
where ev =p /2m —p, .

We first consider order parameters in which wz is
fixed along z and w& rotates in the x-y plane (case
a),

$(z) = Wt (Z) + Iwz(z)

=xcos8(z)+y sin0(z)+ tz,

'7 @=0,

with the boundary conditions 0( —~) = m —00 and
8(~) =80, where 0~80~ —,'m. We note that, at

z + ~, the bound state solutions of Eqs. (6) and
(7) are of the form exp( —K+lzl)(u, u)+, where
Ky and K & 0. The fact that E„—= E(p) is real im-
plies that ev = 0, i.e., p =pF.

This result is a consequence of Vb being an attrac-
tive (repulsive) delta function for p„positive (nega-
tive). When the width of the wall increases, this
"zeroth branch" solution persists but a finite
number of higher-energy branches appear for both
positive and negative p„(see Fig. 1).

The components of the wave function for the
zeroth branch are

a =0, b(g) = b(0)exp[ —
J ds F(s)]. (15)

For this solution to exist, the following conditions
must be satisfied:

P wt(+~) &0; P w ( —m) (Q. (16)

Note that as long as F(f) (& Q for ( +~ the
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FIG. 1. The spectrum of bound states E(p) for case
a: $ (z) = x cos8 (z) + y sin8 (z) + iz and n = 0, 1, 2.
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FIG. 2. The spectrum of bound states E(p) for case
b: $ (z) = —z cos8 (z) +y sin8 (z) + ix and n = 0, 1, 2.

zeroth branch is independent of the shape of the
soliton.

Next we consider order parameters in which w2 is
fixed along x (case b),

Q(z) = —z cos8(z) +y sin8(z) + ix,

V QAO.

and

p, = (2n+1)7r/2a,

p,
' = (2n + 1)m/2a + n (p')/a,

where

~(p')= —tan-'[(p w,
+ )/(p z)].

(23)

Since Eq. (17) is obtained from Eq. (8) by rotating
$(z) by n/2 about the y axis, it is easy to see that
Eqs. (11) and (12) still apply and Eqs. (13) are re-

placed by

(E+y) a = (a, + F+ IS a, cose) b,

(1 )(E y) b = ( —t) t +—F+ i S ti& cos8) a,

where S = (b/4EF) (P z) ', y = (P x)/(p .z),
and F(()=(p wt)/(p z). All other quantities
are defined as before. Again l p l2= pF2 and we take

p z~0.
The zeroth-branch solution is

b=0, a(f) =e's"'sexp[ — ds F(s)]
aJ 0

and the excitation spectrum is (see Fig. 2)

E„o(p)= —P xb for p x & 0.

(19)

(20)

~p i = X, .lu(p') I'- X,, lu(p) I',

where

lw(p) l2= —'[1—e(p)/E(p)]

(21)

(22)

We next calculate the change Ap of the bare fer-
mion density integrated over p, for fixed p„& 0,
due to the existence of the soliton centered at z = 0.
To this end we introduce rigid-wall boundary condi-
tions at z = + a and periodic boundary conditions
on x and y. For example, for case a and a sharp
wall

In the limit pFa » 1, the change in the bare fer-
mion density arising from the scattering states for
p„& 0 is

4p = —'

dp,
d( 1.(p)l')

dp, 2' (24)

while the corresponding quantity for p„& 0 is ——,'.
Therefore the integrated bare fermion density

arising from the scattering states is unchanged.
However, since lu~al2= —,

' for the bound states there
would be an accumulation of half a bare fermion
state, in the ground state, for each pi.

In conclusion, we find that a planar soliton in
He-A exhibits a two-dimensional manifold of

bound states in the quasiparticle spectrum. This
spectrum has two types of branches: the n=0
branch and n~ 1 branches. The former has the
surprising property that its spectrum lacks inversion
symmetry for p„—p„, where x is parallel to the
domain wall. As a consequence, at T& 0 these
quasiparticle bound states will be occupied and
quasiparticle current will flow parallel to the wall in
the direction I & z, where l is the angular
momentum in the region z & 0 far from the wall.
In the typical experimental situation in which many
solitons are produced, there are broad antisolitons
separating the solitons. Our solutions show that, at
the antisolitons, an anomalous quasiparticle current
will flow in the reverse direction. These currents
are connected at the container wall, so that total
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current is conserved.
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The Fourier transform of (3) should be

f(R, i p i)i&it .$(R), where f= 1 near pF and vanishes
beyond a cutoff co, about the Fermi level. Our approxi-
mation reproduces the bulk spectrum near i p i

=pF. It
amounts to suppressing the spatial variation of the mag-
nitude of the gap and requiring t0,/5 )) 1. The approxi-
mation is reasonable since, as we shall see, the bound
states only involve states with i p i

=pF.
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