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Spontaneous Decay of Metastable States in Orthorhombic TaS3
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High-accuracy, long-time dc conductivity measurements were performed at fixed
temperatures. The conductivity corresponding to a metastable state created by a
quick heat treatment was found to be time dependent on the time domain of 10-105
sec. A logarithmic expression describes the time dependence in the entire tempera-
ture range investigated (100 K & T & 150 K). A simple model, based on the analogy
with spin-glasses, is proposed. The possible role of low-energy excitations and in-
frared divergences is also discussed.

PACS numbers: 72.15.Nj, 72.15.Lh

New transport properties, associated with the
collective response of charge density waves
(CDW's), have been studied in a number of ma, -
terials exhibiting the Peierls transition. Ortho-
rhombic TaS, is an excellent model system, where
the nonlinear conductivity, the highly frequency-
dependent ac conductivity, and the coherent cur-
rent oscillations in the nonlinear regime have
been investigated extensively. ' Two phenomeno-
logical models, differing in the basic assump-
tions, were proposed to account for the above
phenomena. In the tunneling model of Bardeen
the CD%'s are treated as quantum mechanical
objects. ' Gruner, Zawadowski, and Chaikin con-
structed a simple, classical model. ' At certain
points these attempts achieved a remarkable
success in spite of the neglect of the internal de-
grees of freedom of the CDVil's.

Recent investigation of the response to high-
field pulses' and accurate measurements of the
Ohmic conductivity" have shown the presence of
metastable states in the material. Theoretical
works on a classical, deformable medium demon-
strated that a sharp threshold for the nonlinear
conduction is possible for random pinning strengths
and it was claimed that metastable states may
evolve in this system. '

In this Letter we report results on the spontane-
ous relaxation of the metastable Ohmic conduc-
tivity in orthorhombic TaS, . Although in earlier
experiments" time dependence has not been
found, the authors made only careful statements,
taking into account the limited time domain avail-
able in experiments not especially planned for
this type of studies. On theoretical grounds the
system with random pinning strengths shows a
slight similarity to spin-glasses, where the time
dependence of magnetization and susceptibility
have been thoroughly investigated. ' Therefore

we made special efforts to expand the accuracy
and duration of the measurements in order to de-
tect the expected weak (e.g. , f ', v-0, or logt)
time dependence.

Standard four-probe samples of high-purity
TaS, (transition temperature T~= 222 K, thresh-
old field Er = 0.5 V/cm) were prepared using 7-
pm-diam annealed gold wires and silver glue.
Setting of the sample current and voltage, current
and time measurements were coordinated by a
Hewlett- Packard model HP85 calculator. The
temperature stability during the measurement
was better than 0.05 K and He exchange gas im-
proved the thermalization.

At a given temperature T the conductivity of

the sample can always be brought to a unique,
well defined value vo(T) by application of condi-
tioning pulses, i.e. , electric field F. high enough

to depin the whole CDW condensate (E & 4Er).6 In

the temperature range of 50 K & T &190 K, a
metastable state can be created by a simple heat
treatment. "The conductivity in the metastable
state, v, differs from 0, and Ao = 0 —0, can be
relaxed to zero in a few microseconds by condi-
tioning.

For the investigation of a weakly time-depen-
dent ao(t) it is essential to cover several orders
of magnitude in the time scale. The requirement
of long-time temperature stability set an upper
limit for the duration of the measurement; there-
fore we tried to expand the time scale to shorter
times. Reliable measurements for short t are
possible only if the thermalization after the heat
treatment is quick enough. To reach the meta-
stable state we directly heated the samply by a
large current pulse. As the current pulse ceases
the few-microgram mass of the sample is quenched
in the He gas to the fixed, stable temperature of
the sample holder.
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Figure l(a) shows the variation of the current
during heating pulses of different magnitude. For
the pulse of 2 V the conductivity of the sample is
far in the nonlinear regime but there is no con-
siderable temPerature change. The increase of
the magnitude of the pulses leads to the pulse
shape characteristic of heating. The quenching
process was monitored by small-amplitude meas-
uring pulses [Fig. 1(b)]. The quick cooling re-
sults in a current decrease in the first few milli-
seconds. From the change in the current one can
estimate a temperature change AT-50 K, i.e.,
&o(&T) is certainly in the saturation regime, '
Application of conditioning pulses results in o
—0, relaxation similar to that observed after a
conventional heat treatment.

The registration of Lo(t) was started -10 sec
after the quenching in order to be sure that no
thermal transients are present. Protecting capac-
itors were connected to the current and potential
leads to avoid unwanted conditioning by external
noise. The electric field in the sample was kept
below Er /20. The small and time-independent
thermopower contribution to the measured volt-
ages was subtracted by current inversion. The
accuracy of the conductivity measurements was
better than 5 X10

In Fig. 2 the time dependence of Ao/o, is plot-
ted for different temperatures. To our knowl-
edge this is the first evidence for the spontaneous
decay of metastable states in a CDW system. The
formula &o/v, =-A logt+ 8 fits the measured

t&v

0.5ms

2 ITls

FIG. 1. Voltage measured on 1.6-kO reference
resistor (a) for heating pulses of different magnitudes
and (b) for sample current during the cooling process.
Highest heating voltage was 9 V; other traces corres-
pond to voltages decreased in steps of 1 V. To moni-
tor the cooling (b) the oscilliscope was triggered at
the end of the heating pulse of 9 V and pulses of 0.09 V
were applied. Total sample length was 5 mm (thresh-
old voltage - 0.25); temperature of sample holder
7'=110 K.
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FIG. 2. Time dependence of conductivity o. after
quenching at t =0. Ao. =o(t) —a.o, where o.

o is the con-
ditioned, stable value. Decrease of Eo corresponds to
the spontaneous decay of metastable states. The dis-
tance between potential contacts is 3 mm; the cross
section of the sample is 10 pm &15 pm.

data with A. = 3& 10 ' independent of temperature.
The parameter 8 is temperature dependent, ac-
cording to earlier observations. ' Corresponding
to this expression the conditioned value of the
conductivity (i.e. , b,v =0) would be reached in
several thousand years, but for extremely long
(and short) times the logarithmic time dependence
is certainly not valid. Plotting log 4o vs log t
shows that b,o/o, —t " cannot be excluded and
the exponent is in the range of 0& v& 0.1. We
would like to emphasize that conventional heat
treatments result in the same time-dependent
he(t), but the first two decades on the time scale
are lost because of the thermal inertia of the
sample holder.

Discussing the results we assume that the sin-
gle-particle gap 4 is sensitive to the presence
of metastable CDW states. A possible mechanism
is that the pinning centers prevent the tempera-
ture-dependent" wave numbers of the CDW's
from reaching their equilibrium value after a
heat treatment and the frozen wave number re-
sults in a nonequil. ibrial gap. " The deviation 6
=(b, -A, )/6, (where b,, corresponds to the con-
ditioned, stable state) manifests itself in the con-
ductivity o'- exp(- 6 /k T ). The relative change
in the conductivity for small 5 is bo/v, = (b.,/kT)6.
Another phenomenological assumption is that the
CDW's relax to the equilibrium by thermally
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activated processes. The relaxation rate y de-
pends on the temperature and on the local pinning
strength k in the form y = (1/7) exp(-k/kT) where
1/w can be related to the phonon frequency. We
suppose a wide distribution P(h) for the pinning
strengths and express the quantity characteristic
of the decay of metastable states as I(t)
= Jo dAP(k) exp[-y(h) t]. This idea was originally
applied for spin glasses by Ma. ' The deviation in
the gap is proportional to this quantity 5 = eI.
From the f =0 limit, 5 = a IP (k)dh = e, one can
estimate an upper bound to a since the deviation
in the gap is probably not higher than a few per-
cent. On the other hand at short times we ob-
served bo/c- 10/~ which corresponds to 5) 1%.
Therefore we take e =0.02 as a rough estimate.

In case of flat distribution of pinning energies,
i.e. , if P(h)=1/D is constant for a range of k

wider than &7 the integral can be evaluated' and
we get 4c'/v, = —n(D, /D)logt+ I3 where IJ contains
v. and other parameters characteristic of P(h).
We note that for uniform distribution D is the
magnitude of the strongest pinning energy.

The above expression, obtained from the spin-
glass analogy, describes the observed logarith-
mic time dependence. A crucial assumption was
the random distribution of the individual pinning
strengths. Fisher has shown' that this does not
contradict the presence of a sharp threshold field
for the nonlinear conduction. The slope nh, /D
is independent of the temperature in agreement
with the measurement (Fig. 2). Using the esti-
mated value of a we can calculate the highest
pinning energy from the measured s1ope as D
= aA, /A= 0.5 eV. Charged impurities, con-
sidered as strong pinnings by Lee and Rice, '
lead to interaction energies of this magnitude.

Although with some reasonable assumptions we
got a consistent picture, the model described
above is not the only way to account for the ob-
servations. A wide variety of materials, includ-
ing ceramics, ionic conductors, polymers,
amorphous semiconductors, and electrochemical
and biological systems, show anomalous long-
time relaxation in response to different excita-
tions (mechanical stresses, external electric
fields, photocurrents, etc.). In a recent review,
Ngai and Lin have proposed" a unified theory
claiming that infrared (IB) divergences are re-

sponsible for these phenomena. The best known
examples are the bremsstrahl. ung in quantum
electrodynamics and the x-ray absorption-edge
problem in solid state physics. The sudden ap-
plication of a potential or a sudden change in the
Hamiltonian and the availability of low-energy
excitations (LEE's) are the common features to
systems exhibiting IR divergences. As the equi-
librium is approached the relaxation rate changes
because of the presence of LEE's. In a Peierl. s
system LEE 's (e.g. , long-wavelength acoustic
modes of the deformable CDW's) are quite prob-
ably coupled to the rearrangement of CDW's.
From this point our dc conductivity measurement
is a sensitive but indirect tool to examine the
internal state of the material. More detailed
investigations on the frequency-dependent di-
electric response may help to clarify the situa-
tion.

We are indebted to A. Janossy for proposing
the quenching method and F. Beleznay for calling
our attention to Ngai and Lin's work. Useful
discussions with Gy. Hutiray are acknowledged.
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