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Topological Mapping Properties of Collisionless Potential and Vortex Motion

S. F. Shandarin
Keldysh Institute ofApplied Mathematics, Moscow, U. S.S.R.

and

Ya. B. Zeldovich
Institute for PhysicalProblems, Moscow, U S S .R. .

(Received 24 May 1983)

The topological properties of patterns which arise in free motion of matter under random
but smooth initial velocity distributions are considered. Potential and solenoidal motions are
discussed. The cosmological role of this phenomenon is also briefly discussed.
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Let us consider the free motion of a continuous
pressureless medium with a random but smooth ini-
tial velocity field and constant initial density

p ( x, t = 0) —= 1. The problem is interesting being
similar to the cosmological motion leading to the
formation of structure in the universe, at least in
some variants of the theory. '

In Lagrangian. coordinates and in the simplified
force-free case this motion is described by the equa-
tion

x=g+tV(g),
here x are Eulerian and ( Lagrangian coordinates, t
is the time, and V($) is the velocity of every parti-
cle specified at t = 0 and constant for every particle
thereafter. The motion perturbs the uniformity of
the density distribution. With a smooth random
velocity field, at small t density perturbations are
small and are given by a smooth function. The gen-
eral features of the strongly nonlinear situation are,
however, nontrivial. The growth of negative per-
turbations is limited, Bp/p) —1, because mass
density is never negative. On the other hand posi-
tive perturbations can grow without limit and it
turns out that infinite density is achieved in a finite
time as a result of caustic formation (as in catas-
trophe theory). The density distribution in Euleri-
an space is also highly asymmetric: The dense re-
gions (separated from rarified ones by caustics) oc-
cupy a volume which is several times less than that
occupied by rarified regions. This is evident from
mass conservation. The nontrivial point that we
wish to stress concerns the topology of the dense
regions at the nonlinear stage: They form thin walls
which surround rarified regions —the rarified
domain consists of large separated regions. There
are infinite jumps of density on the frontiers
between dense and rarified domains. This structure
is born out of a smooth velocity distribution
without singularities. We believe that these
features of the simplified problem are reflected in
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the pattern observed by astronomers: the large
black regions ("voids") without galaxies and the
strings of galaxies.

The two-dimensional case can be modeled by the
refraction or reflection of a parallel light beam by a
smooth random surface. Thin bright regions can be
observed in a sunny day at the bottom of a swim-
ming pool (Fig. 1). The occurrence of caustics in
light propagation is well known —their connection
with catastrophe theory has already been men-
tioned. 4' However, their topological properties-
in particular, the formation of a network —have not
been studied theoretically.

The peculiar topological properties of the density
distribution occur only as an intermediate asymp-
tote. They are absent in the linear regime and they
vanish after multiple crossing of light rays or trajec-
tories of collisionless particles. If we are dealing
with gravitating particles (see below) the dense re-
gions remain thin —gravity produces an effective
sticking. 67 However, these regions become un-
stable against disruption of their surfaces. Again
the cellular or network structure exists as an inter-
mediate asymptotic. The ultimate state consists of
isolated but continually merging dense regions
(clumps). 6 8 '0 The duration of the peculiar cellu-
lar or network structure depends on the power spec-
trum of the initial velocity perturbations. The
search for specific structural and topological proper-
ties of a given density distribution is rather difficult,
especially when ~orking with discrete objects—
galaxies —instead of a continuous medium. The
methods of percolation theory" '3 are well suited
to this case.

At first glance the motion of a cosmological
medium under gravitation and the Hubble expan-
sion is quite different from that of a noninteracting
medium. However, it has been shown' that
cosmological motion has much in common with
simple inertial motion. From the decoupling of
matter and radiation until the formation of large-
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FIG. 1. The photograph of a screen illuminated by

light reflected by the wavy surface of a water pool. The
surface is lighted by a parallel train. The bright regions in

the picture correspond to the density regions in the case
of collisionless particles.

scale structure, the motion of a gas of slow massive
neutrinos or of neutral atoms can be described by a
simple approximate solution

r = a(r) g+ b(r)grad/((), (2)

here r and g are Eulerian and Lagrangian coordi-
nates, a(r) is the scale factor, and T is the time.
The time dependence of a (r ) describes the Hubble
expansion of the universe. The second term on the
right-hand side of (2) describes the perturbations.
The formula assumes that only the growing mode
b(~)~ ~4/3 is present. The perturbations are grow-

ing because of gravitational instability and therefore
the velocity field must remain irrotational. One can
thus describe it by a potential @(() which can be
derived from initial perturbations. Making simple
substitutions

r =a(r) x, b(r)/a(~) = t, grady(g) = v((),
one can easily obtain (1) from (2).

At the stage when structure forms the behaviors

of neutrinos and normal matter (atoms) become
different. Neutrinos are collisionless and hence re-
gions of multistream flow must occur. Atoms con-
stitute an ordinary gas which experiences shock
compression. However, as it was mentioned above,
gravity acts like sticking; therefore we expect that
the difference between these two cases is small.
The simple formula (2) is equally inapplicable in

both cases in the compressed regions.
In this Letter we consider the most general po-

tential flow and discuss also solenoidal velocity
fields. There are eight cases of the problem which

originate from three alternatives of choice: (1) po-
tential (P) or vortex (V) velocity field of (2) col-
lisionless (C) or sticking (S) medium in (3) two-

dimensional or three-dimensional (3D) space. Ear-
lier, S cases were briefly discussed by one of the
present authors. '

Let us firstly consider all PC cases in 2D and 3D.
In these cases

~; = &0/~(1

p = ~-'= (s,„+t a'y/ag, ag„(
While t is small (summing over i),

p = 1 —t 8'@/ll(; 6(;.
We consider random but smooth, statistically

homogeneous functions $ with a power spectrum
cut off at both short and long wavelengths and with
random and independent Fourier phases; the distri-
bution function of $ is then Gaussian.

Let some level pa divide space onto two domains:
a dense one where p & po and a rarified one where

p & po. What can one say about the topology of
these domains? The answer comes from percola-
tion theory. Usually in 2D the domain which con-
tains more than 50% of the total area contains the
infinite cluster (or in other words there is percola-
tion of this phase) which divides the other domain
(occupying less than 50'/o of the surface) into
separate regions (there is no percolation of this
phase). In 3D there is also the possibility that both
domains contain infinite clusters. This takes place
if one of the domains occupies more than =16%
but less than 84'/o of the total volume. In other
cases the smaller domain consists of separated re-
gions. ' These two critical values coincide quite ac-
curately with levels pa= p +a~.

At the linear stage of perturbation growth,

((p —p)2) « p, the positive (p —p ) 0) and
negative (p —p & 0) domains are statistically sym-
metric and each occupies 50% of the surface or
volume. In 2D both phases are marginally percolat-
ing, in 3D they are strongly percolating.
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The situation becomes quite different at the non-
linear stage. Instead of (4) one gets the following
equation for density (in 2D):

p= J '=(1+rlt+t'I, )

= (1—ra) '(1 —rP)

where

It = t)vt/t)(t+ t)v2/t)$2,

~2= (~v t/~Ct)'dv 2/~(2 (~-v t/~(2) &vg6gt,

(5)

iQ WAUKS

which in P case coincide with the invariants of
t) Q/8$;Bfk, n and P are the eigenvalues of t)2$/

er aC .
A mapping from g space to x space, where the

structure is observed, is produced by Eq. (1). It is
continuous and therefore conserves an important
topological property: Closed curves or surfaces in
Lagrangian space remain closed in Eulerian space in

spite of their strong deformation (even if additional
intersections do arise).

Let us consider first the Lagrangian space. About
79% of the total area in 2D and 92% of the total
volume in 3D is occupied by matter which

possesses at least one positive eigenvalue. ' In spite
of the fact that the statistics of the eigenvalues are
not Gaussian it is thus quite reasonable to suppose
that the domain of at least one positive eigenvalue
contains the infinite cluster, and so we can say that
there is percolation along the regions of positive
eigenvalue (Fig. 2). After mapping into Eulerian
space these regions contract and therefore occupy
less area (in 2D, Fig. 3) or volume (in 3D), but
they remain connected to each other and we can
speak about the conservation of percolation (topo-

logical) properties. Just this very reason explains

why at the nonlinear stage the thin regions of
compressed matter separate regions of low density
in 2D, in spite of the former occupying in 2D space
much less than 50% and the latter more than 50'/o

of the total area (see also the optical example in

Fig. 1).
In 3D the equation &=0 becomes third order

which has for the P case, three real roots for t: in

8% of all cases three positive roots; in 42%, two
positive and one negative; also in 42'/o, one positive
and two negative; and in 8%, three negative roots. '7

This means that about 92/0 of the matter will ex-
perience contraction in caustics which is larger than
the 84% that is necessary for the isolation of rarified
regions in the Gaussian case.

Let us now discuss the V case, i.e., a vortex ve-
locity field. In 2D one can produce this field from a
flux function $,

, =a@/a&, ; .,= —ay/a&. (6)

In this case we get It ———0 and

~=1+12t2 (7)
Remembering that in the potential case the signs of
the eigenvalues n and P depend on the sign of 12,
we immediately find that regions of negative I2
coincide with those where n and P have opposite
signs (Fig. 2). This means that about 58'/0 of
matter will pass through infinite density. This value
shows that it is very probable that the domain of
negative I2 contains an infinite cluster and per-
colates.

In the 3D V case the equation W =0 has one or
three real roots for t with probabilities pt and p3,
p t+ p3= 1. It is.clear from symmetry that the prob-
ability of a positive root equals p+ = 0.5p j +AP3,
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FIg. 2. The example of a random perturbation field.
Black areas are regions where both eigenvalues (a and
p) are positive; grey, n is positive but p is negative; and
white, n and p are negative. Theoretical values for the
areas are 21% (+ + ), 58% (+ —), and 21% ( ——). In
the realization these numbers are a little different.
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FIG. 3. (a) The region of u ) ao in Lagrangian space,
occupying about one-third of the total area. (b)
tnaPPing of this region into Eulerian sPace at r= I/~p' in

Eulerian space it occupies only about one-fifth of the to-
tal area.
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with A ) 0.5. Thus in the 3D V case more than
50% of matter experiences contraction in caustics
(i.e. , reaches infinite density at some time). This is
enough for formation of a connected network.
However, it is probably not enough for separation
of rarified regions. Thus it seems that both phases
(dense and rarified) contain infinite clusters (i.e.,
percolate) which of course is impossible in 2D. As
was mentioned for C cases, the network structure is
an example of intermediate asymptotics. In the
limit t ~ at each point x there are more and
more particles from quite different regions of $. A

Gaussian distribution of initial velocity field in

space becomes a Maxwellian distribution of veloci-
ties at every point in this limit. Density fluctua-
tions are close to those in a system at thermo-
dynamic equilibrium. However, a finite limit arises
only if continuous medium is replaced by a set of
point particles with finite mass as the temperature
of the system is proportional to the mean kinetic
energy of a single particle. In a continuous medium
reasonably defined density fluctuations in an arbi-
trarily small but fixed volume tend to 0 as t

The fact that the structures we discuss are tem-
porary does not make the problem uninteresting. It
seems that we are lucky to live at the time when the
large-scale structure of the universe is similar to
one of the cases discussed, namely, 3D-P-S. Des-
truction of the structure will need more time than
the present age of the universe. Phenomena of
such importance and duration undoubtedly deserve
consideration.
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