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Percolation Thresholds in the Three-Dimensional Sticks System
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We report the dependence of the percolation threshold of the three-dimensional sticks sys-
tems on aspect ratio and on macroscopic anisotropy. This Monte Carlo study is the first
determination of percolation thresholds for randomly oriented objects in three-space. The
results show that the above dependence is determined by the excluded volume of the sticks.
However, the total excluded volume of randomly oriented objects is lower than that of the
same objects in parallel alignment.
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The study of percolation in three dimensions has
centered thus far on the percolation in lattices. '

The only three-dimensional continuum system that
has been studied in some detail is the system
of hard-core or soft-core (interpenetrating)
spheres. Other systems which were briefly
studied are those of "regular" objects, such as
cubes or ellipsoids, which are aligned parallel to
each other. Here, we report the first study which is
concerned with random orientation of the objects in
three dimensions. We present results showing the
dependence of the percolation threshold on the as-
pect ratio and the macroscopic orientational aniso-
tropy of the sticks system.

The three-dimensional objects chosen for this
study are capped cylinders. They consist of a
cylinder of length L and radius r which is capped at
the two ends by hemispheres of radius r. The
choice of this kind of stick is motivated by the pos-
sibility of making a comparison, in the L/r 0
limit, with the well established results obtained for
spheres. 2 7 This is quite important for checking
the three-dimensional model where, unlike the

two-dimensional case, no convenient graphic dis-
play of the system is feasible. Our soft-core sticks
system is also a good description of composites in
which elongated conducting particles are flexible
enough to contact each other in a manner which
geometrically resembles interpenetrating sticks.
Much interest was given recently to these compos-
ites 9- 12

The algorithm used in the present study is similar
in principle to the one used in two dimensions.
The capped cylinders are randomly put in a unit
cube and their orientations in space are chosen ran-
domly. Here we have chosen fixed size sticks (of
length L and radius r in units of the cube's size)
and we are searching for the critical concentration
of sticks, N„which is required for the onset of per-
colation across this cube. The anisotropic case con-
sidered here is that of uniaxial anisotropy, where
the axis of symmetry is the z axis. This means that
the angle 0; between the axis of stick i and the z
axis of the cube is chosen randomly in the interval8

—8~~0;~0~,
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while the other spherical coordinate Q; is always
chosen randomly in the interval 0 ~ $;~ 2m .
Hence for a system of N sticks the macroscopic an-
isotropy of the system is defined as in the two-
dimensional case:

10

1

SEED 559
L = 0.15

N N

P ~~/P ~ = X )cos8;(/ X [I —(cosH; ) ]'~, (2)

~here P~~
= (L + 2r)$,~, ~cosH; ~

is the sum of the
sticks axes projections in the parallel (or longitudi-
nal) direction and PL = (L+ 2r) $,~, ~sin&;~ is the
corresponding sum in the perpendicular (or
transverse) direction. Correspondingly, the critical
concentration in the z direction, N, ~1, and the criti-
cal concentration in the perpendicular direction,
N, ~, are determined for each value of Pt~/P~.

As was pointed out above, it is important to
check the present results against the well studied
case of spheres, in order to establish the reliability
of the procedure used. Hence, we have used our
procedure in the isotropic case (0„=7r/2) for a
fixed L =0.006 and a variable r in the range
0.01 & r & 0.4. In this range (L/r « 1) the sticks
have practically degenerated into spheres. We have
determined N, ~~

and N, j for each value of r and
used (N, ~~

+ N, ~)/2 = N, as the average of the criti-
cal concentration. The computed dependence of
1/N, on r was found to be cubic. This dependence
is to be expected from the invariant value found for
the critrical volume of hard-core spheres'3 as well
as the invariant value found for soft-core spheres. '4

Moreover, for a radius of, say, r =0.02 we found a
critical concentration of 10000 spheres. Hence
the volume of all these spheres is (4m/3)
x(0.02)3104=0.335. This is in excellent agree-
ment with the value of 0.35+0.02 obtained in
many other studies. '4 (To appreciate the accuracy
of our determination of this volume let us mention
that it was found for all values of N, ) 1000. As
expected the lower the N, the larger the deviation
from this value. For example, for N, =100 our
computed value was 0.40.)

Following this agreement we have considered the
isotropic case with a fixed L and a variable r in
which r is varied so as to scan the wide range of as-
pect ratios (L/2r) from L/2r « 1 to L/2r » 1.
The dependence of 1/N, on r in this wide range is
shown in Fig. 1. The most notable feature in the
observed dependence is the variation from a linear
to a cubic dependence. The fact that the cubic
dependence is observed for very small ensembles of
sticks does not jeopardize its reliability since this
dependence has been confirmed in the L/r « 1

region for large ensembles (see above). The impor-

O
10

10'-

~O

10
0.001

I

0.01
I

0.1

FIG. 1. The dependence of the critical concentration
N, of capped cylinders on their radius r in an isotropic
system of sticks.

tant observation is the linear dependence in the
L/r » 1 region. This dependence does not follow
from Refs. 2 and 4, where it was concluded that
N, Vis a dimensionally invariant quantity. Here V
is the volume of the object. In our case

(3)

and thus a linear dependence on r is not expected.
To further check this point we have considered a
fixed r and a variable L case in which N, was com-
puted as a function of L. The results which were
obtained for r =0.015 and 1~ L ~ 0.01 show that
in the L/r » 1 region the dependence of 1/N, on
L becomes quadratic. This is again in disagreement
with the N, V argument. We see then that, in the
L/r » 1 region, 1/N, is proportional to L2r. This
result is in accord with our suggestion that it is the
object's excluded volume rather than the object's
volume which determines the percolation thresh-
old. The excluded volume is the volume around an
object in which the center of an identical object
should not be present if interpenetration of the two
objects is to be avoided. '5 '6 It appears that the dis-
tinction between the object's volume' and its ex-
cluded volume, in the context of the percolation
threshold, has not been made previously, because
almost all previous studies were concerned with
spheres. For spheres the two arguments are equal
since the excluded volume is simply eight times the
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object's volume. Hence the excluded volume of all
the spheres is 8(0.35) =3. This value has also
been found5 to be "dimensionally invariant" for
other objects, yet the corresponding study was lim-
ited to the case where the objects were all parallel to
each other.

Considering our capped cylinders it can be shown
that the excluded volume of each is given by'

SEED 7

oooo — L=02
r =0.008

7000—

sooo—

Nett

o Ncx
———EXCLUDED VOLUME THEORY

V,„=(32m/3) r + 8Lr +4L r (siny), (4) 3000—

where (siny) is the average of siny, and y is the
angle between two sticks. The first term in Eq. (4)
is just the spherical term discussed above, while the
last term is the one discussed by Onsager's for the
L/r » 1 case. The results presented in Fig. 1 for
the L/r » 1 region show that the maximum possi-
ble total excluded volume 4L2rN„associated with
our random orientation case, is significantly lower
than that for spheres or parallel-aligned objects. s

This maximum volume is 1.8 rather than the value
of 3 discussed above. Our result is not trivial since
the critical excluded area of a widthless randomly
aligned stick is relatively close (less than about
80%) to the critical excluded area of a circle. 2'7 An
intuitive argument for the above difference is based
on the fact that the overlap of the excluded
volumes in the random case is lower than the two-
dimensional-like overlap of the excluded volumes
in the aligned case. '

Turning to the dependence of the percolation
threshold on anisotropy, we should consider the
average (siny) in order to compare the Monte Car-
lo results with the behavior predicted by the
excluded-volume argument [Eq. (4)]. To do this,
siny has to be integrated over the possible ranges of
the spherical coordinates of two sticks. This in-
tegral can be readily solved'7 in the isotropic
0„=m/2 case yielding a value of (siny) = n/4 For. .
other values of H„we computed (siny) numerical-
ly.

Following these considerations we have comput-
ed N, s and N, i as a function of 0„, or of Pili/Pi,
in the region where the L r dependence of 1/N,
was found for the isotropic case (Fig. 1). The
results obtained are shown in Fig. 2. Also shown in
this figure is the expected dependence of N, on
Ps/Pi (dashed curve) which was obtained from
the dependence of (siny) on 9 The exp. ected N,
was normalized by the "experimental" isotropic
value found at Pii/Pi=1. For Pili/Pi ( 8, the
results and their scatter around the predicted
dependence resemble the behavior found for two
dimensions: N, j is found to be the upper limit to
the critical concentration and N, ii is found to be the
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FIG, 2. The dependence of the critical concentration
of sticks on the macroscopic orientational anisotropy of
the system Pili/Pt. Both the critical concentration for
percolation along the axis of symmetry, N, 1i, and the crit-
ical percolation concentration perpendicular to this axis,
N, i, are to be compared with the prediction given by
Eq. (4) (the dashed curve).

lower limit to this concentration. Taking systems of
fewer sticks has shown that the gap between the
N, i1 and the N, i values has increased. We also
show the case of an extreme anisotropy
(Pii/Pi=11. 5) in order to demonstrate that the
dependences predicted by Eq. (4) are fulfilled:
Once L2r(siny) becomes small compared with the
other terms in Eq. (4) the dependence on anisotro-
py is eliminated. We may conclude then, that in
the region where the long-stick approximation
holds (4L2r(siny) » 8Lr2), the predicted results
are between N, ii and N, t found "experimentally. "
We see then that, similar to the two-dimensional
case, there is an isotropic percolation threshold in
uniaxially anisotropic three-dimensional systems.

In conclusion, we have shown that the depen-
dence of the percolation threshold of randomly
oriented three-dimensional sticks on their aspect ra-
tio and anisotropy is determined by their excluded
volume. The numerical value of the total excluded
volume is found to be significantly lower than the
invariant excluded volume of spheres and some
other parallel-aligned objects. This indicates that
orientational randomness has a much stronger ef-
fect on the onset of percolation in three dimensions
than it has in two dimensions. Similar to the two-
dimensional case an isotropic percolation threshold
is found for the uniaxially anisotropic three-
dimensional systems.

The authors are indebted to C. H. Anderson and
S. Alexander for many helpful discussions during
the course of this study.
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