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We present a classical field theory which has a long epoch resembling the Friedmann uni-
verse despite the presence of a large negative cosmological constant. In its most plausible
realization the model involves a massive third-rank antisymmetric-tensor gauge field. To be
consistent with standard cosmology the mass must be extremely small and the only reason-
able mechanism for generating it is a semiclassical tunneling effect.

PACS numbers: 98.80.—k, 03.50.Kk

Several authors' have suggested that a third-
rank antisymmetric-tensor gauge field A „„„may
play a role in solving the problem of the cosmologi-
cal constant. In attempting to implement this idea
one quickly finds that most local Lagrangians in-
volving 3,„ lead to equations of motion whose
solution involves an undetermined integration con-
stant. The paradigm for this phenomenon is the
free action

While the integration constant (in this case F) may
be chosen to cancel a negative bare cosmological
constant, there is no dynamical reason for this to
occur.

In this Letter we will explore the consequences of

adding a nonlocal term

,
'

p, J d x—dy F(x)t) (x —y)F(y)

to the action. In "Landau gauge" (t)"A„„~=0)
this is just a mass term —,

'
p, A„',„. We will find that

if p, is extremely small, the solution of the resulting
cosmological equations has a long period which
resembles what we presently know of the history of
the universe.

Equation (2) is the analog of the nonlocal gauge-
invariant mass term which is generated for the
two-dimensional electromagnetic field in the
Schwinger model. Alternatively, we may think of
it as arising from a Higgs-Stueckelberg Lagrangian

2
Tp r)[p0vx] Apvx

by solving for 0,& in terms of a„,&. In any event, it
is technically natural to take p, = 0.

The generally covariant extension of (1)+ (2) is

(3)

Here M —10' GeV is the Planck mass, p is the en-
ergy density of matter and radiation, and we have
chosen a negative cosmological constant, —A .4

Note that if we define W=—Q/p„F = —
p, P, these

are the equations for a scalar field of mass p, ."
To analyze these equations we define dimension-

less variables

s = (A2/M)t,

~= p/A', (10)

H = (A /M)h,
(6)

(7)
F = [2(H M + A —p) ]' cosg/2, (12)

M+3H M=F,
1. . t2 t

+p —A

(13)~= [2p, '(H'M'+ A' —
p ) ] ' ' sine/2,

e=p, M/A . (14)

5 = —,
'

J d s F (x)/( —g) 'I + —,
'

p, Jt d x d y F (x) b, '(x,y) F (y),

where 5 = t)„[(—g ) 'I g"'8, ]. Note that F is a
scalar density.

If the metric has the Robertson-Walker (RW)
form and we use Coulomb gauge (BkAqt~=0),
then the equations of motion imply 3 ok

= 0 and
we get an effective action for

A(i)= jdx"Adx'Adx A„, (4)

S= dt 3 2R ——,'p, 3 R

R (t ) is the RW scale factor.
The equations of motion for A and R are (F = A /

R3, M=A/R3, and we take flat spatial sections for
simplicity)

F= —p, M,
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d0/ds = e —3h sin(), (16)

if h + I ~ o- initially. (We have assumed that p
= —cph, c & 0.)

We take a universe which is initially expanding
rapidly: h & 0 and

~
h

~

—0 (1) or bigger. For
e &( 1, Eqs. (15) and (16) have approximate fixed
lines sinH =e/3h, which are shown in Fig. 1. The
solid lines are attractive, the dashed ones, repulsive.

For a large set of initial conditions with h ) 0,
the flow is drawn in to the line marked with an ar-
row in a time of order 1 (in units of M/A ). h then
evolves more or less along this line. If o- « 1, the
motion is very slow until h decreases to 0(e).
Then h speeds up, crosses 0 (the universe begins to
contract), and reaches negative values of order 1 in

a time of order 1. The universe has entered on a
period of explosive contraction.

In terms of the scalar field Q, this long period of
slowly changing expansion rate is easy to under-
stand. When h —0(1), Q experiences frictional
forces of order 1 and (if e (& 1) a very small re-
storing force. $ quickly goes down almost to zero
(the fixed line) and stays there until the restoring
force can compete with the friction h —0 (e).

The above scenario has a long period which re-
sembles our universe if e, cr « 1. As long as we
are near the fixed line, then in the regime e « h« 1 we have

dh/ds = ——,
' co.—e /12h .

This is the equation of the usual Friedmann models

Then (6)—(8) are equivalent to

dh/ds = —3(h'+ 1 —o.) sin'8/2 —c o/2, (15) e/h &(o
and h = Jrr. The strongest bound is at the present
time since h and o- have been decreasing. This
gives

p. &10 ' M/A

so that e/h„, „&(1, as assumed. This means that
the Friedmann equations have been valid for a long
time and wi11 continue to be so for a long time to
come. Note, however, that the present era is in no
way special. Prior to the Friedmann era the uni-
verse went through a long period of exponential ex-
pansion during which the expansion rate changed
even more slowly than it does today.

The present analysis should be thought of as pro-
visional. We have introduced the matter-energy
density p in a phenomenological way, imagining it
to have been created at a finite time in the past in
some cosmological phase transition, rather than
continuing to increase indefinitely as t
The real implications of our scenario for cosmologi-
cal phase transitions, the baryon asymmetry, etc. ,
have not yet been thought through. We hope to re-
port on these questions in a future publication.

The extremely small value of p, which is neces-
sary to make our model work cannot be explained
in terms of ratios of any of the scales characterizing
ordinary particle physics. Even if we consider su-
persymmetric models, in which A can be as small as
10 GeV, we still have p, & 10 GeV. The only
plausible reason for the appearance of such a small
number is a semiclassical tunneling factor.

For example, it is easy to construct extensions of
the standard SU(3) 8 SU(2) jm U(1) model in
which there are global symmetries spontaneously
broken at some large scale f and explicitly broken
by SU(2) instantons. The corresponding Goldstone
bosons get a mass

m —(mt22/f )exp ——sin20 tt

77 /2

h=~/5

F[Q. 1. Approximate fixed lines of Eqs. (15) and (16).
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which can satisfy the bound (19) if o, sin 0 ~,
and/or the instanton action are allowed to differ
from their true values by factors of order 1.

Unfortunately, even if we interpret our equations
as referring to a scalar field, it cannot be a Gold-
stone field for a compact symmetry. Such a field
lives on a compact manifold. If its potential is a
tiny symmetry-breaking effect, it can never grow
large enough to cancel the cosmological constant.

We do not know enough about theories in which
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the field A „„&appears to know whether a mass term
can be induced by semiclassical effects. The re-
quisite tunneling configurations live on three sur-
faces in Euclidean four-space, and their existence
and stability depend on the short-distance physics.
Until such time as a theory can be found in which a
convincing semiclassical calculation can be done,
our "solution" of the problem of the cosmological
constant will only have replaced it with the mystery
of why p, is so small. Nonetheless, since all pertur-
bative contributions to p, in four dimensions can be
eliminated by symmetry arguments, I believe that
some progress has been made.

Conversations with E. Kitten and J. Polchinski
are gratefully acknowledged. I also wish to express
my thanks to the Institute for Advanced Study for
its hospitality while this work was in progress. This
work was supported in part by the Israel Commis-
sion for Basic Research.

~'~On leave from Tel-Aviv University, Ramat-Aviv, Is-
rael.

'E. Witten, "Fermion Quantum Numbers in Kaluza-
Klein Theories (to be published).

2S. Hawking, "Quantum Cosmology" (to be pub-
lished)

3J. Schwinger, Phys. Rev. 12$, 2425 (1962).
4The possibility that a negative cosmological constant

could be cancelled by a scalar field with $ W 0 was con-
sidered in unpublished work by the author and S. Raby
and independently by J. Breit, S. Gupta, and A. Zaks.
The cosmological equations in such a model do have a
solution in which the scalar field energy exactly cancels
any negative cosmological constant. However, this solu-
tion is unstable to arbitrary perturbations. If we start
with a small expansion rate h, the universe passes quickly
into a contracting phase. From this point of view the
present model solves the problem by making the scalar-
field potential very flat in the region where it cancels the
cosmological constant, However, for the antisymmetric-
tensor field the flatness is technically natural.
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