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Fractal Structures Formed by Kinetic Aggregation of Aqueous Gold Colloids
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We use transmission-electron micrographs to study the structure formed by the irreversi-
ble kinetic aggregation of uniformly sized aqueous gold colloids. The structures are highly
ramified and exhibit a scale invariance that is well described as a fractal with a Hausdorff
dimension of —1.75. This value is in excellent agreement with recent computer simulations
of diffusion-limited aggregation when the clusters themselves are allowed to aggregate.

PACS numbers: 64.60.Cn, 05.40.+j, 61.16.Di, 82.70.Dd

The process of aggregation or flocculation of
small particles to form larger clusters and the struc-
tures that result are important technologically and
scientifically. The clusters formed by the aggrega-
tion of metal colloids, soot, or coagulated aerosols'
are characterized by their tenuous, chainlike struc-
ture. Virtually all of our knowledge of the growth
of these structures has come from computer simula-
tions, which have suggested that the resultant
structures exhibit scale invariance and can be well
described as fractals. Thus, for example, the mass
of the cluster is predicted to scale as I.D, where L is
the size and D is the Hausdorff or fractal dimension
and is typically less than the Euclidian dimension.

Two general classes of irreversible aggregation
have emerged from the simulations. The first of
these classes involves cluster formation by the ac-
cretion of single diffusing particles onto a seed ag-
gregate. 3 The diffusive nature of the particle
motion appears to be essential, 7 and the resultant
structure has D —2.5 in three dimensions. The
second class involves cluster formation by the
homogeneous aggregation of a collection of parti-
cles.4 5 In this case, most of the growth results
from the aggregation of two clusters of comparable
size rather than a small and a large cluster. In con-
trast to the first class, the nature of the transport
does not seem to be important, and the resulting
structure is a characterized by a lower dimensionali-
ty, D —1.75 in three dimensions. 8

In contrast to the wealth of recent theoretical
work, experimental studies that can test the validity
and applicability of the modern theories have been
rather sparse. In an early work, which stimulated
much recent theoretical interest, Forrest and Wit-
ten9 analyzed electron micrographs of metallic
smoke-particle aggregates formed in air and found
what appeared to be long-range power-law correla-
tions. In this paper, we study the irreversible,
kinetic aggregation of a rather different system,
highly uniform aqueous metal colloids, We charac-

terize the structure of the aggregates both by
measuring the cluster-to-cluster variation in mass as
their size increases, and by measuring the long-
range density-density correlations within individual
aggregates. 'o We find that the resulting clusters are
indeed scale invariant and are well described as
fractals, with D —1.75, in remarkable agreement
with recent computer simulations. 8 Since we are
examining transmission electron-microscope
(TEM) images, our analysis is performed for a
two-dimensional projection of the clusters and
makes use of the fact6 that the fractal dimension
remains unchanged upon projection provided
D~2. Thus, while the results are unambiguous
for the TEM images, the extension of our con-
clusions to the three-dimensional colloid clusters
depends on the projection being close to geometric.
However, we believe that the fractal nature of the
clusters is established and that this work represents,
to our knowledge, the first attempt to characterize
the structure and growth mechanisms of colloidal
aggregation using these quantitative techniques.

The gold particles are formed by the reduction of
Na(AuC14) by tri-sodium citrate, " and initially the
sol consists of isolated, very uniformly sized, spher-
ical particles —14.5 nm in diameter, separated, on
the average, by —60 particle diameters. The
surface-adsorbed citrate causes the gold particles to
be highly charged, and the ionic strength of the
solution creates a Debye-Huckel screening length
of only a few atomic distances. The resulting repul-
sive double-layer interaction between the particles
makes the sol very stable against aggregation. Ag-
gregation is initiated by the addition of a small
amount of pyridine to the solution. " The un-

charged pyridine displaces the charged citrate on the
surface, reducing the repulsion between colloidal
particles, and alowing them to stick when they col-
lide. Using surface-enhanced Raman scattering, we
have shown that the pyridine displaces the citrate
on the surface on a time scale of «1 min. '3 By
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contrast, the aggregation occurs on much longer
time scales which can be controllably varied from—30 min to several weeks.

We examine the structure of the clusters using a
transmission electron microscope (TEM), and en-
sure that no additional aggregation occurs as the
liquid is evaporated from the highly hydrophyllic
grid. However, awhile the aggregates are three-
dimensional in solution, edge-on examination with
the TEM shows that upon drying they collapse to
form nearly flat, two-dimensional structures. By
examining the full area of the TEM grid, clusters of
widely varying sizes can be found and photo-
graphed, representing a snapshot in time of the ag-
gregating colloid. A typical picture of a relatively
large aggregate is shown in Fig. 1. It exhibits the
tenuous, ramified appearance characteristically ob-
served for colloidal aggregates.

To illustrate the scale-invariant nature of the ag-
gregates as they grow, and to obtain an estimate of
their Hausdorff dimension, we measure the number
of particles in a cluster, N, as a function of the size
L. Since there are relatively few overlapping parti-
cles, even in the largest cluster, N can be measured
with high precision. As a measure of the size, we
take the geometric mean of the longest linear
dimension of the cluster and the length perpendicu-
lar to that axis. A logarithmic plot of N versus L is
shown in Fig. 2 for nearly 100 different clusters on
the grid. The data are very well described by a
power-law behavior, as expected for a fractal. 6

Similar results were obtained for pictures from oth-
er grids, and linear least-squares fits to the data sets

give an estimate of the Hausdorff dimension,
D = 1.7 + 0.1.

The internal structure of each cluster also exhi-
bits scale invariance. %e show this by recording
the center coordinates of each individual gold parti-
cle and calculating the point-to-point correlation
functions of the images of the clusters, c (r)
=—(p(r)p(0))/(p(r)). Here p(r) is 1 at a particle
center and 0 elsewhere, and the average is over po-
sition and orientation of the cluster. In our
analysis, we account for the finite size of the clus-
ters and correct for edge effects by finding the
smallest circle that just encloses each cluster. Then,
centered on each individual gold particle we find
the largest circle which fits inside the outer circle,
and include only other particles within the small cir-
cle in the calculation of c(r). This ensures that for
all directions there is an equal probability of finding
a second particle a distance r from the first, but lim-
its the maximum extent over which we can measure
correlations to less than one quarter the cluster size.

For a two-dimensional projection of these frac-
tals, we expect6 c(r) —r for r « L, where
a = 2 —D. A representative series of correlation
functions calculated for clusters of increasing size is
shown by the solid lines in Fig. 3. For the very
small clusters, the statistics are poor and the curves
are noisy. However, once the number of particles
in the cluster becomes greater than about 1000, the
correlation functions exhibit an extended linear re-
gime, with the slopes essentially independent of
cluster size. The limiting slope, shown by the
dashed line in Fig. 3, yields n= —0.23 +0.1, where
the error reflects the cluster to cluster variation.
The resulting Hausdorff dimension is D = 1.77
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FIG. 1. TEM image of typical gold colloid aggregate.
This cluster contains 4739 gold particles.

FIG. 2. N vs L, where the solid line is a least-squares
fit to the data, with the slope giving D —1.75. Wean be
converted to mass by multiplying by the mass of a single
gold particle, —10 ' g, while L can be converted to
nanorneters by multiplying by 14.5.
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FIG. 3. Point-to-point correlation functions of TEM
images of gold aggregates with (a) 125, (b) 1165, and
(c) 4739 particles. The slope of the dashed line is
—0.23, and yields D —1.78. r is scaled by the particle di-

ameter, 14.5 nm.

+0.1, consistent with the value obtained from the
number versus size behavior.

Several other consistency checks were performed
on the data to confirm the value of D obtained.
The digitized images were analyzed in a way that
explicitly tests for their scale invariance. '4 A grid
was drawn over the data and a histogram was com-
piled of the number of squares in the grid contain-
ing It particles as a function of n If the .object were
scale invariant, the second moment of the histo-
gram would scale as l l, where l is the grid square
length. We indeed found power-law behavior and
the value of D obtained was in excellent agreement
with that obtained by the other techniques. We
tested our analysis using a computer-generated frac-
tal of the type Mandelbrot has called a curd. Using
a curd generated in three dimensions, we measured
the Hausdorff dimension of a projection using both
our correlation function and our self-similarity anal-

yses and established the validity and accuracy of our
analysis techniques.

The value obtained for the Hausdorff dimension
appears to be rather insensitive to the experimental
conditions. To within experimental error, we ob-
tained the same value for the structures produced
when the rate of aggregation is varied over several
orders of magnitude. '5

Strictly speaking, our analysis is valid only for the
two-dimensional images of the three-dimensional
clusters that exist in solution. However, the most
reasonable assumption to make about the collapse
of the aggregates is that their structure is approxi-
mately projected geometrically from three to two
dimensions, which would leave D unchanged. It is
in fact difficult to conceive of any other form of

structural distortion occurring that would result in
scale invariance with the same D for both the inter-
nal structure of the individual clusters as well as for
the cluster-to-cluster variation of N versus L.
Nevertheless, some distortion of the geometric pro-
jection, with an effect akin to "squeezing a
horse, "6may occur, particularly at short ranges, as
a result of a slight attractive interaction between the
gold particles and the grid surface. This would
result in a slower decrease of the point-to-point
correlation function at short ranges and might ac-
count for the flattening of c(r) of the larger cluster
observed in Fig. 3 at small r.

The relative offset in the magnitude of e(r) for
clusters of different sizes, shown in Fig. 3, also
results from the projection of the aggregates. While
the power-law behavior of c(r) survives a projec-
tion if D ( 2, if the fractal is of finite extent, there
is a relative deficiency of projected points on the
plane, resulting in a reduction in the magnitude of
c(r). For a cluster of size L, this reduction is in-
dependent of r and decreases in magnitude roughly
as L . We observe a similar behavior for curds of
different sizes, where we can calculate the asymp-
totic magnitude of c(r) and find that the magnitude
of the reduction does indeed scale as L

We conclude that the three-dimensional structure
of the aggregates is most likely also scale invariant,
with a Hausdorff dimension of D —1.75, and com-
pare our results with computer simulations for
three dimensions. Of the two general classes of
computer simulation, the physics of the aggregation
of the gold colloids is much better approximated by
the mode14 5 for homogeneous aggregation. In this
case the main contribution to the growth process ul-
timately is the aggregation of clusters themselves.
In three dimensions, the simulations predict
D —1.75, in remarkable agreement with the value
obtained in these experiments.

These results offer an opportunity to compare the
predictions of the recent computer simulations of
irreversible, kinetic aggregation to real, physical
systems. The agreement is certainly encouraging.
This work also demonstrates the utility of using the
scale-invariant description of the structure of col-
loidal aggregates and suggests that this may also
lead to a better and more detailed characterization
of the physical behavior of fractal objects such as
the optical, transport, or diffusion properties.
Furthermore, the structures formed by this aggre-
gation process are likely rather insensitive to the de-
tails of the particle-particle interactions, and this
type of analysis can be expected to apply equally
well to many other aggregating systems.
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