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Upper Critical Dimension for Wetting in Systems with Long-Range Forces
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It is shown that the upper critical dimension d' for complete wetting is d'=3 for short-
range forces and d' ( 3 for long-range forces. The critical exponent vi~ for the divergence of
transverse correlations at complete wetting in three-dimensional systems is found to be
v ii

——~ for short-range forces and v ii
——

3 for long-range forces of van der %aals type.
l 2

PACS numbers: 68.10.Cr, 64.10.+h, 68.55.+b

Much recent work, both theoretical' ' and ex-
perimental, '" '6 has been devoted to the study of
wetting transitions. At such transitions, a liquid
film is adsorbed on a substrate surface leading to an
interface between the adsorbed liquid phase and the
gas phase in the bulk. The interplay between the
substrate surface and the liquid-gas interface can
lead to critical phenomena since the mean distance
of the interface from the surface can diverge in a
continuous manner. Such interface delocalization
occurs both at complete and at critical wetting as
the bulk coexistence curve is approached. At criti-
cal wetting, the interface becomes also delocalized
as bulk or surface parameters are varied while the
system is at coexistence. Complete wetting has
been observed in several experiments. ' ' So far,
there is no experimental evidence for critical wet-
ting.

Theoretically, two types of models have been
studied in order to elucidate the critical properties
at the wetting transitions: (1) discrete and continu-
ous models for the liquid-gas density, ' and
(2) effective solid-on-solid (SOS) models for the
interface between the liquid and the gas
phases. ' In the first type of model, the density
profile has been calculated by mean-field (MF) ap-
proximations which underestimate the effects of in-
terface fluctuations, i.e. , capillary waves. In the
SOS model, one focuses attention on these capillary
waves.

The interface fluctuations do not necessarily in-
validate the results of MF theory. This happens
only for space dimension d ~d' where d' is the
upper-critical dimension for the transition. For
d ) d', MF theory should yield the correct critical
singularities. It has been shown recently that
d'=3 for critical wetting and short-range interac-
tions. In this Letter, the upper critical dimension is
obtained for complete wetting in systems with
short-range and with long-range forces. Some re-
marks on critical wetting in systems with long-range
forces are also included.

For temperatures above the roughening tempera-
ture, the correlation length (~~ for transverse corre-
lations diverges at complete wetting as
~ (5p, ) ' where 5p, denotes the deviation of the
bulk chemical potential from its value at coex-
istence. It is shown below that v~~

= —,
' for three-

dimensional systems with short-range forces and

v~~
= —,

' for three-dimensional systems with long-

range forces of van der Waals type. The correlation
length (~~ should show up in the diffuse scattering
of light from the interfacial region. Thus, the sur-
face exponent vI~ may also be determined experi-
mentally.

(I) Complete wetting and short range forces-.—In
this case, the transition can be described by a
Landau-Ginzburg (LG) potential f(n) for the den-
sity n with two almost degenerate minima. One
minimum corresponds to the gas phase with density
n = ng, the other to the liquid phase with n = nI.
The difference f(nt) f(ng)~ 5—p, which denotes
the deviation of the bulk chemical potential from its
value at coexistence. The mean-field (MF) approx-
imation for the density profile n (z) is obtained
from d2n/dz =Bf/Bn. z is the coordinate perpen-
dicular to the surface. For special potentials f(n},
the MF profile n (z) can be obtained analytically in
closed form. s On the other hand, one can show
that the critical properties at complete wetting do
not depend on the details of f (n) As long as .the
minima of f(n) have a finite curvature correspond-
ing to finite bulk correlation lengths, and as long as
f(nt) f(ng)~ 5p, , the c—ritical properties remain

unchanged: One finds that the mean interface posi-
tion t diverges as I~in(5p, ) and the MF surface

free energy has a singular part f, "~ 5p,
x ln(5p, ). If the critical exponents p, and n, are

defined via l~ (5p, ) ' and f,~ (5p, ) *, their MF
values are p, = 0 (logarithmic) and n, =1.'

The capillary waves show up as a soft mode in the
Gaussian fluctuations around the MF profile
n(z). 9 In order to characterize these fluctua-
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tions, one has to consider an eigenvalue problem
which has the form of a Schrodinger-type equation.
The soft mode corresponds to the ground state with
"energy" Eo. For a large class of LG potentials
f(n), upper and lower bounds for Fo can be
found' which show that Eo goes continuously to
zero at complete wetting as ED~ hp, . The upper
bound is obtained by a variational method, the
lower bound by means of Temple's inequality. ' A
detailed account of these bounds will be given else-
where '8

Because of the soft mode, the Gaussian fluctua-
tions give a singular contribution f, " to the surface
free energy. If one compares f, "with the MF con-
tribution f, ", one finds' that f, " is more singular
than f, "for d ( 3, and less singular for d ) 3. As
a consequence, the upper critical dimension is
d'= 3 for complete wetting and short-range interac-
tions.

Thus, for short-range forces, d'= 3 both for criti-
cal and for complete wetting. A priori, this is not
to be expected since complete and critical wetting
are two different types of surface criticality. At
complete wetting, hp, is the only relevant scaling
field. 2' In contrast, there are two such fields at
critical wetting. " Note, for comparison, that
different types of bulk criticality usually lead to dif-
ferent values for d'. For instance, d'=4 for a criti-
cal bulk transition, and d'=3 for a bulk tricritical
point.

The upper critical dimension d'=3 just derived
can be obtained more easily in the framework of an
appropriate SOS model for the local interface posi-
tion l ( p ) which has the generic form

F (I j = JI d 'p (—,
' (V l ) + V(l) I, (1)

where p are the (d —1) coordinates parallel to the
substrate surface at I =O. Since the interface can-
not penetrate this surface, V(l) should contain a
hard wall, i.e.,

oo, l (
, V(l), l ) 0.

For short-range forces, the expression

V(l) = Ae '+ Sp, l

has been obtained by field-theoretic methods start-
ing from the above mentioned LG model for n. '
As before, hp, measures the distance from bulk
coexistence. A is proportional to the MF deviation
from the critical ~etting line inside the coexistence
surface and ~ is as parameter which contains the
surface tension of the interface.

l~ (hp, ) ', P, = —1/(r+1),

(,i~ (hp, ) ", v, i

= (r+2)/(2r+2),

f,~ (5p, ) ', n, = (r+2)/(r+1),

(5a)

(5b)

(5c)

For the model described by (1)—(3), critical wet-

ting occurs for hp, = 0 and A A, from below with
the critical coupling 3, «0. Complete wetting oc-
curs for 3 & 3, and hp, 0+. The MF value for
the critical coupling is A, = 0. For A ) 0, V(l) has
a minimum at a finite t value even in the presence
of a hard-wall potential at t =0. In MF theory, this
minimum determines the mean interface position /

via 8 V(l)/8/(;=0, the correlation length (~~ for
transverse correlations parallel to the surface by

(( ~~ ) = 8 V/8 l ~;, and the surface free energy

f, = V(l). For (3) with 3 ) 0, one easily finds in

this way l~ ln(hp, ), (~~~ (hp) with v~~
= —,

' and

f,~ Spin(5p, ) which implies n, = 1. The upper crit-
ical dimension d'=3 is now obtained in the usual
way ' when the mean-field values v(( = —,

' and o, , = 1

are inserted into the hyperscaling relation
(a I)pii =2

Note that $ ~~
is predicted to diverge at complete

wetting with the critical exponent v(~. The MF
value v(( = —,

' found above should be correct for
d & d'= 3. Qn the other hand, if one includes the
effect of capillary waves by the methods described
in Refs. 5, 9, and 10, one finds that v(~ = —,

' holds
also for d = 3.

It has been realized before by numerical investi-
gations of the van der %aals integral theory for
fluids that the transverse correlations diverge at
complete wetting. However, the nature of this
divergence has not been determined. In Fig. 11 of
Ref. 3, (~~ as obtained from the numerical work was
plotted as a function of In(hp, ). Presumably, this
was motivated by the logarthmic divergence of I.

However, this plot clearly shows that (~~ does not
diverge logarithmically. Qn the other hand, if one
takes these numerical data and plots ln((~~) as a
function of In(hp, ), one finds a straight line with a
slope = ——,. Thus, the numerical investigations
of the van der Waals integral theory yield v

~~

=—,
'

in

accordance with the MF result derived above from
the SOS model, Eqs. (1)—(3).

(2) Complete wetting and long range forces-In.—
this case, an appropriate SOS mode is defined by
(I) (2)

V(l) =Bi '+Sp, l, (4)

with 0(r (~. For 8 &0 and hp, 0+, the MF
approximation gives
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at complete wetting. The divergence (Sa) of the
mean interface position has been obtained previ-
ously in the context of lattice gas models. ' As far
as I know, (Sb) and (Sc) have not been derived be-
fore. Note that the scaling relation P, =1—n,
which is valid for short-range forces also holds in
this case for arbitrary r. If one inserts the mean-
field values for v~~ and n, as given by (Sb) and (Sc)
into the hyper scaling relation, one obtains the
upper critical dimension

d'(r) = (3r + 2)/(r + 2) (6)

for complete wetting in systems with long-range
forces. Note that d"=3 for short-range forces is
recovered from (6) in the limit r ~. For finite r,
d'(r) & 3, i.e. , the upper critical dimension is re
duced by longer-ranged forces. Such a reduction is
well known in the context of bulk critical phenome-
na. In addition, a nontrivial test of (6) can be ob-
tained for d =2. In this case, the field theory de-
fined by (1), (2), and (4) can be solved exactly by
transfer-matrix methods. One finds that

f,~ (Sp, )'it'+'~ for 0 & r & 2, and f,~ (5p, ) 2i3 for
r & 2. Thus, the MF result for o., is recovered for
0 & r & 2 in d = 2 as predicted by (6). "

From a physical point of view, the most interest-
ing case is r = 2 which corresponds to three-
dimensional systems with van der Waals forces. ''
From (6), one finds d'(r = 2) = 2. Thus, MF
theory should be valid for r = 2 and d = 3. As a
consequence, such systems should exhibit a diverg-

ing correlation length (~~cc (hp, ) " at complete
wetting with v~~

= —,
' from (Sb). It would be in-

teresting to see whether this value for v
~~

can also
be obtained by the van der Waals integral theory for
fluids.

(3) Critical wetting and long range forces -In or-.—
der to apply MF theory to the SOS model (1), (2),
and (4) with Sp, =0, one has to replace the hard
wall at l = 0 in (2) by a smooth repulsive potential.
A priori it is not clear what l dependence such a
repulsive potential should have. For short-range
forces, an exponential I dependence has been
derived in a systematic way starting from the LG
model for the fluid density. 7 For long-range
forces, an exponential I dependence can also be ob-
tained if one starts from a LG model for the density
where the long-range interactions in the fluid enter
only indirectly via a contribution to the effective
substrate potential [cf. Eq. (10) of Ref. 1]. This ap-
proximation leads to

tion can only occur for B B,=O . As B B„
the MF singularities obtained from (7) are
l~ ln(1/b), g ~~

~ b 'i, and f, cc b ln(b) with
b = )8 I lln)8 ( (

'+" . This implies the upper criti-
cal dimension

d" (r) =3

for the critical transition of (7).
Note that (3), (4), and (7) may be combined in

order to study wetting in the extended (t,A, 8)
phase diagram. It then becomes apparent that,
within MF theory, the critical transition in systems
with long-range substrate potentials corresponds to
the complete transition in systems with short-range
potentials.

In d = 2, exact results show that r = 2 is a boun-
dary value also for the critical transition: For r ( 2,
the critical coupling has its MF value B,= 0,
whereas B, (0 for r & 2." r =2 is rather special
since the surface free energy has an essential singu-
larity. "'3 Although these results have been ob-
tained for a hard wall they should also hold for (7).
This seems to indicate that the critical transition is
described by MF theory for r & 2 in d = 2. On the
other hand, the hyperscaling relation holds for all

values of r since o., = —', and v~~
= —,'. This implies

d'(r) ~ 2. In addition, the scaling dimension Ab of
58 = 8, —8 is 6& ——(2 —r)/3 and —, in d = 2 for
r ( 2 and r & 2, respectively, whereas Ab = 1 from
MF theory applied to (7). Thus, the exact results
in d =2 imply d'(r) ) 2 which is consistent with

(g).
As long as B,= 0, a critical wetting transition can-

not occur at a finite temperature. ' For short-range
forces (8 = 0), capillary waves can shift the phase
boundary in d = 3 from its MF value 3,=0 to
A, (0 as shown in Ref. 9. For long-range forces
and (7) with r & 2, such a shift is not to be expect-
ed since B,=O even in d =2. In addition, the
results of Ref. 13 indicate that capillary waves do
not change 8, =0 for the SOS model (7) and arbi-
trary r in d = 3. On the other hand, it is not known
how (7) is modified if one starts from a more realis-
tic model for the fluid density. More work in this
direction seems to be called for. This may also shed
some light on the contradictory results for critical
wetting obtained by Teletzke, Scriven, and Davis 5

and Tarazona and Evans for d = 3.
I thank D. M. Kroll and H. Wagner for helpful

discussions.

V (l) = We -'+ 8i-' (7)

at bulk coexistence. In MF theory, a critical transi- ~For a recent review see R. Pandit, M. Schick,
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