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Stabilization of the Negative Mass Instability
in a Rotating Relativistic Electron Beam
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It is shown that the negative mass instability in a rotating relativistic electron layer may be
stabilized by a radial dc electric field of a suitable magnitude. The stabilization mechanism is
independent of the beam velocity spread, and is insensitive to the beam current, the con-
tainer geometry, or the azimuthal mode number. A simple stability criterion is given.

PACS numbers: 52.60.+h, 29.20.-c, 47.75.+f, 52.35.Py

The negative mass instability poses a major ob-
stacle to the development of high-current cyclic ac-
celerators. Various methods of stabilization have
been proposed and analyzed. Notably, the effects
of a moderate beam angular velocity spread and be-
tatron oscillations have been considered. For a
betatron, the addition of a toroidal magnetic field
has been shown to reduce the instability growth rate
considerably5 6 and for the Astron, the proximity of
the container walls to the relativistic electron layer
(E layer) stabilizes the lower azimuthal modes. s

In this Letter, we show that by imposing a nega-
tively biased radial electric field of a suitable
strength, the negative mass instability may be
suppressed. This stabilization differs from all previ-
ously known mechanisms in that it is effective even
for a very cold beam; it does not require a toroidal
magnetic field, nor is it sensitive to the container
geometry, the beam current, or the toroidal mode
number. The simple stability criterion, given in Eq.
(10) below, does not seem to be very stringent for
electron beams in the megaelectronvolt range.

Our finding is based on an analytic treatment of
the stability of the E layer situated in a configura-
tion similar to the Astron, which has been shown
to include all essential features of the negative mass
instability. We limit our study to a highly ordered
beam whose unperturbed orbits are concentric cir-
cles. Such a beam should yield the most pessimistic
prediction as far as the beam stability is concerned;
hence our analysis is conservative. The simplicity
of the assumed equilibrium orbits allows the linear
stability theory to be formulated exactly, including
all ac and dc space-charge effects, alt relativistic ef-
fects, and all electromagnetic effects, for general
equilibrium profiles. As we shall see, our disper-
sion relation reproduces the standard results in the
appropriate limits. For example, the diocotron in-
stability is recovered, and the negative mass insta-
bility removed, in the planar, nonrelativistic limit.

Consider a cylindrical E layer with radial density
profile np(r) which, in equilibrium, circulates con-
centrically with azimuthal velocity vp(r) =Ovp(r)
=Ore)p(r) under the combined action of an axial
magnetic field Bp=iBp(f) and radial electric field
Ep=rEp(r). These fields include both the self-
fields and the externally imposed fields. We as-
sume that the E layer is located between two
cylindrical conductors of inner and outer radii a and
b, respectively, and that there is no axial motion
nor axial variation in either the unperturbed or the
perturbed states.

The governing equations for the equilibrium read

y pv p/r = —(e/mp) (Ep+ vpBp), (1)

dBp/dr = p, pJp @pen pvp, ,

r 'd(rEp)/dI =npe/ep.

(2)

Here, e and mp are respectively the electron charge
and rest mass, p, p and Ep are the free-space permea-
bility and permittivity, and yp= (1 —vp/c ) ' is
the relativistic mass factor with c being the speed of
light. Once the electron density np(r), the total
electrostatic potential difference between r = a and
r = b, and the magnetic flux are specified, the un-
perturbed fields vp(r), Ep(r), and Bp(r) are to be
solved from (1) to (3) to yield a self-consistent
equilibrium solution.

We next consider a small-signal perturbation on
such an equilibrium. All perturbations are assumed
to vary as f (r) exp(i cot —il0), where l is the azimu-
thal mode number and co is the (complex) eigenfre-
quency to be determined. In the absence of axial
variation and of axial motion, the TM modes and
the TE modes are decoupled. The nontrivial com-
ponents of the rf electromagnetic fields are E„Ez,
and B, for the TE modes. The Maxwell equations,
the Lorentz force law, and the continuity equation
may then be linearized and combined to yield the
following second-order ordinary differential equa-
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tion for Q = rEe'.
1

d 1
I

ND dy ~o ~' dnD dW

dr r p yo2 dr 0 c2 dr dr

In this equation

0=a) —lo)p(r), ND=o)~/o)pD, p=1 —l c /co r +NDfl /o),

cu~ =e np/ypmpep, D PQ 0 /o)L P=yo(1+h), 0 = h+v'p/o) p,

lD ND (~o/)P/yo ~ AD�(l/p ) (1+NDP0+/l~o)

Pp=up/c, 8 = (co /2c2r)(1 —qD2/p+ND/y2p).

(4)

In the definition of 0, a prime denotes a derivative with respect to r, and h is proportional to the equilibrium
electric field and is defined by

h = —erEo/m py plJ p.
3 2

Note that h is positive (negative) if the equilibrium electric field points radially outward (inward). The
eigenvalue cu is determined by solving (4) subject to the boundary conditions P = 0 at r = a and at r = b

Equation (4) is completely general and of wide applicability. It governs the small-signal stability properties
of various devices including the Astron, " gyrotron, ' orbitron, " and cross-field microwave devices, '

depending on the parameters of the electron beam as long as the equilibrium states are modeled by Eqs.
(l)-(3). A detailed comparative stability study of various types of equilibrium will be given elsewhere. For
the present purpose, we restrict ourselves to an E layer with uniform density no extending from r = rt„ to
r = r2. The E-layer thickness ~ = r2 —r1 is assumed to be much less than the mean radius R. We shall use
r/R as an expansion parameter. Furthermore, we assume that ~O~ (( coo, a condition readily satisfied by
the negative mass mode.

The instability growth rate co; may be analytically derived from Eq. (4) for a thin E layer by expanding
about the singularity 0 = 0 in the complex r plane. To two orders in 7/R, it is given by

I 2 l7 (Po+2h) l'v'
(6)b++ b ', R I+y,'h'

where b+ (b ) is the normalized wave admittance at the outer (inner) edge of the E layer, ' and

=1 1A=—
4 y,'(I + h )'(I+ y,'h')

2'
(P'o+ 2h + (1+h )'l+ 2 ', yt(Pp+ 2h )' —y'o(I+ yo'h') (Po'+ 2h )'

O)0 Q)0

(1+h )(u~/(op b+ —b

yp(I + yoh ) b+ + b

The first-order term (in v/R ) of (6) describes
the negative mass effect' and dc field effects, while
the second-order term includes the diocotron ef-
fect' and finite-thickness stabilization. 3 The
derivation of (6) will be given elsewhere. Its validi-

ty may be tested as follows:
(a) If the beam is infinitesimally thin, and if we

ignore the dc electric field by setting h = 0, we then
recover from (6) the well-known dispersion rela-
tionship co,2-=(l7/R )cu~Po2/(b++ b ) for the neg-
ative mass instability for the Astron geome-
try 8, 3, 4, 10

t

(b) A more stringent test on the validity of (6) is
to consider the planar geometry limit. In this limit,
we let R ~, I 0o, ~0 0, but require that vo,
k~=l/R, Ep, and r remain finite. Then h

from (5) and the first term of the right-hand side of
(6) tends to zero, consistent with the notion that
there is no negative mass instability in a planar
geometry. Using only the last term of (6), we then
obtain

o),' ——(ky'~'/4yosh ') (u,'/(u(') ——(kr'r '/4y4o) m~4/(u
2
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2
I

1

b, +b
(p', +2h)
(1+y(~)h')

which agrees with the well-known growth rate for
the diocotron instability for a sheet beam. ' In writ-

ing the last expression, we have used the self-
consistent equilibrium condition Ep+ vp x Bp

= 0
(for a planar sheet beam) in (5) and defined
to, = ~e ~Bc/mayo. This agreement with previously
known results adds to our confidence in the disper-
sion relationship (6), especially with regard to the
effects of dc self-fields. Recent work on the
diocotron instability is reported by Tsang and
Davidson. '5

For a thin E layer with sufficiently high energy
( & 1 MeV), the last. term of (6) may be ignored.
The dispersion relationship may then be approxi-
mated by

relativistic electron may be converted from negative
to positive if h is less than —Po/2. It should be
stressed, however, that the stability condition (9) is
derived from collective-mode considerations which
include both the ac and the dc self-fields. '

In summary, this Letter presents a novel, robust
method to suppress a major instability in circular ac-
celerators. Technical aspects such as fabrication,
beam injection, and beam retrieval remain to be
studied. A more refined analysis may be needed to
examine the possible occurrence (if any) of residual
instabilities. The stability criterion (9) may be test-
ed on several currently operating devices.

We would like to thank P. Sprangle, I. B. Bern-
stein, and L. R. Barnett for discussion, and B. H.
Hui and J. M. Mangano for encouragement. This
work is supported by the U. S. Office of Naval
Research.

Thus, the sufficient condition for stability is

h ( —Po/2 (9)

for the usual case' b++b & 0. This stability
condition (9), together with the definition of h in

(5), implies that a sufficiently strong, radially in-
ward electric field may render the relativistic elec-
tron beam stable against the negative mass instabili-
ty. This stabilization is independent of the beam
velocity spread or betatron motion, and since its
derivation has already taken into consideration the
dc self-field effects, the criterion (9) is not restrict-
ed to a low-current beam. ' In the event that the
externally imposed electric field exceeds the self-
fields, the stability condition (9) may be rewritten
as

)e@~ & ',"petya ln(b/a), (10)

where
~
e $ ~

is the externally imposed potential
difference (in kiloelectronvolts) between r = a (the
cathode) and r = b (the anode).

As an example, take 8 =100 cm, b —a =4 cm.
Then, according to (10), a 1-MeV electron beam
would be stable against the negative mass instability
if the inner conductor is negatively biased at a volt-
age greater than 200 keV with respect to the outer
conductor.

A partial explanation of the stability condition (9)
may be given in terms of the single particle motion
in an externally imposed field Ep and Bp. Let e be
the total energy (kinetic and potential) of an elec-
tron. One may easily deduce from (1) that
dtoo/de= (dtoa/dr)dr/de~ (po+2h)/(1+yeah~) if
the self-fields of the electron layer are neglected.
Thus, the effective azimuthal inertia' of a rotating

&'~Also at Berkeley Research Associates, Springfield,
Va. 22150.

'C. E. Nielson, A. M. Sessler, and K. R. Symon, in
Proceedings of the Internal Conference on Accelerators
(CERN, Geneva, 1959), p. 239; also A. A. Kolomenskii
and A. N. Lebedev, ibid, p. 115.

~R. %. Landau and V. K. Neil, Phys. Fluids 9, 2412
(1966); also R. W. Landau, Phys. Fluids 11, 208 (1968).

3Y. Y. Lau and R. J. Briggs, Phys. Fluids 14, 967
(1971).

"H. S. Uhm and R. C. Davidson, Phys. Fluids 20, 771
(1977), and 21, 265 (1978).

5P. Sprangel and J. L. Vomvoridis, U. S. Naval
Research Laboratory Memorandum Report No. 4688,
1981 (unpublished) .

sP. Sprangle and D. Chemin, Part. Accel. ( to be pub-
lished) .

7P. Sprangle and C. A. Kapetanakos, J. Appl. Phys. 49,
1 (1978); also N. Rostoker, Comments Plasma Phys. 6,
91 (1980).

R. J. Briggs and V. K. Neil, Plasma Phys. 9, 209
(1967), and J. Nucl. Phys. , Pt. C 8, 255 (1966).

9V. K. Neil and W. Heckrotte, J. Appl. Phys. 36, 2761
(1965).

See, e.g. , Y. Y. Lau, J. M. Baird, L. R. Barnett, K. R.
Chu, and V. L. Granatstein, Int. J. Electron. 51, 331
(1981); also Y. Y. Lau, IEEE Trans. Electron Devices
29, 320 (1982), and references therein.

I. Alexeff and F. Dyer, Phys. Rev. Lett. 43, 351
(1980). See also L. R. Barnett, doctoral dissertation,
University of Tennessee, Knoxville, 1978 (unpublished),
for a related device.

See, e.g. , O. Buneman, R. H. Levy, and L. M. Linson,
J. Appl. Phys. 37, 3203 (1966), and references therein.

3The expressions for b+ and b for the present
geometry are given by Eqs. (49) and (50) of Ref. 8,
where it is shown that 1/[leo(b++ b ) 1 is equivalent to

1427



VOLUME 52, NUMBER 16 PHYSICAL REVIEW LETTERS 16 APRiL 1984

the geometrical g factor for the toroidal configuration
treated in Ref. 1. For the toroidal configuration, g is al-

ways positive.
t40. Buneman, J. Electron. Control 3, 507 (1957).
~5K. Tsang and R. C. Davidson, Bull. Am. Phys. Soc.

28, 1211 (1983).
6If the container wall is lossy, the wave admittance

(b+ + b ) would be complex. The electron beam may
then be subject to resistive wall instabilities even if the
stability criterion (9) is satisfied. The resistive growth
rate and the negative mass growth rate scale differently,
however. We wish to thank A. M. Sessler (private com-
munication) for reminding us of the importance of resis-
tive wall instabilities, and for furnishing an argument

supporting our conclusion on the stabilization mecha-
nism.

i7It is of some interest to note that the negative mass
factor dcuo/de is maximized with respect to h when
h = ljy02. Thus, according to Eqs. (1) and (5), the 8
layer is most unstable, and is therefore most likely to
yield radiation, if its equilibrium rotation is solely sup-
ported by a radially outward electric field. Reference 11
reported a potent radiation source of this type. More-
over, since the dispersion relationship (8) is applicable
for arbitrary combinations of Fo and 80, and for arbitrary
energy of the electron beam, it provides a ready compar-
ison of the "potency" among various microwave devices
such as the gyrotron, orbitron, heliotron, and cross-field
devices (if the small-signal growth rate is used as a cri-
terion). Further discussions, as well as the confirmation
of the stability criterion (9) by a numerical integration of
(4), will be reported elsewhere.

1428


