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Kac-Moody Symmetries of Kaluza-Klein Theories
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The authors identify symmetries of the four-dimensional Lagrangian, including the
massive states, obtained via Kaluza-Klein compactification from gravity in five dimen-
sions and ground state M4&&8'. The symmetries are described by (1) a Kac-Moody ex-
tension of the Poincare algebra, (2) a Virasoro algebra of internal symmetries including
the Salam-Strathdee SO(1,2), and (3) a mixing of (1) and (2). All symmetries are spon-
taneously broken save for Poincare (3 U(1). The Goldstone bosons provide masses for
the spin-2 tower. Higher dimensions and supergravity are discussed.
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We are assuming that the ground state is given by

Four-dimensional theories obtained from Kal.u-
za-Klein compactification of highe r-dimensional
gravity theories describe a finite number of mass-
less states and an infinite tower of massive states.
The four-dimensional symmetries will depend on
the general covariance and other symmetries of
the higher-dimensional theory, and the corre-
sponding transformations on the fields will mix
the massless and massive sectors. In this Letter,
we show that the symmetries are described by an
infinite-paramete r Kac-Moody"-type algebra. '

For simplicity, we begin by considering pure
gravity in five dimensions, with coordinates Z"
=(xp, 9/m), where %= 1, . . . , 5 and p, = 1, . . . , 4,
described by the action

S = (2rr Ir ') -' fd'x de (- q)"'Z (q),

which is invariant under the infinitesimal general
coordinate transformations

g„„(x,e) = Q g„„„(x)e'"s,
OO

A„(x, e)= Q A„„(x)e'"', (4)

y(x, 8) = Q cp„(x)e'"'

with g„,„*=@„,„, etc.
It is well known' that, after integrating over 0

and retaining only the n= 0 terms in Eq. (4), one
obtains a theory of a massless spin 2, g„„;a
massless spin 1, &„„and a massless spin 0,
y„described by the action

M4x Sl l.e. four-dimensional Minkowski space
times a circle of radius m ', and hence that 0
+ 0 &2n. Consequently, in the change of vari-
ables given by

( ) gyp gpv+ & rtoApAv K+A p

K+Ap

the fields g„„&„, and y are periodic in 0 and
may be Fourier expanded in the form

d4~ g 1/2 ~0
@ ~ ~PP if+0 +0N ) 1 0 o~

0 2 4 0 PPO 0 6 2
@

2 (5)

where indices are raised and lowered by g „„and
where I'„„=Bp„—B,A„. The action is invariant
under general coordinate transformations

gpvo= B p~o g pvo+ Bv~o hippo+ ~o B pg pvo,
''

&A ~ = B pfoPA po+ goP Bg „o,

Gyp= &pi'0 (P~;

local gauge transformations,

5A —K 8

&A ~0
= AA ~p' 5&0 = 2 A.&0~ (8)

The symmetry of the vacuum, determined by the
vacuum expectation values

where q„, is the Minkowski metric, is the four-
dimensional Poincard group S R. Thus the mass-
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lessness of g„„is due to general covariance and
the masslessness of A „,to gauge invariance, but

pp is massl es s because it is the Go ldstone boson
associated with the spontaneous breakdown of the
global scale invariance. Note that the gauge
group is R rather than U(1) because this trun-
cated n=0 theory has lost all memory of the peri-
odicity in L9.

In this paper, however, we wish to analyze the
four-dimensional symmetries of the theory which
results from retaining the nc0 modes in Eq. (4)
and which describes in addition to the above mass-
less states an infinite tower of charged, massive,
purely spin-2 particles' with charges q„=n&rn
and masses m„=!n!rn. To this end, we also
Fourier expand the general coordinate parameter
f~ of Eq. (2) in the form

&~(x, e)= g &„~(x)e'"',
n =-~

P(x, e) = Q g„'(x)e'"'

(10)

with &„"*=& „~, An important observation is
that the assumed topology of the ground state,
namely Jtf'& S', restricts us to general coordi-
nate transformations periodic in 6}. Whereas the
general covariance of Eq. (6) and the local gauge
invariance of Eq. (7} simply correspond to the n
= 0 modes in Eqs. (10) and (11), respectively, the
global scale transformation of Eq. (8) is no longer

[P„~,P.'] = 0,

[M ~ P ]=11"P -71 P

[M "" tie & ]=q&&~ "+q"~
[Q„, Q.] =(n- m)Q„, ,

[Q„,P "] =- mP„

[Q„,~„&"] =- mtlf„, „~".
Since n, m = —~, . . . , -1, 0, 1, . . . , ~, Eqs. (19),
(20), and (21) define a Kac-Moody-like loop alge-
bra, Poincard S C[t, f ']. Equation (22) is the
Virasoro algebra without a central extension.
Equations (23) and (24) describe a mixing be-
tween the generalized "internal" generators Q„
and the generalized "space-time" generators
P„~ and M„"'. It will be interesting to see wheth-
er the absence of the central extension in this
algebra persists in the quantum theory.

Although the above algebra is a symmetry of
the four-dimensional Lagrangian, the symmetry

a symmetry because it corresponds to a rescal-
ing ay», = (2X/3) y», together with a general co-
ordinate transformation of the form

g'=- ~O/m, (12)

which is now forbidden by the periodicity require-
ment. The field p, is therefore merely a pseudo-
Goldstone boson and its masslessness an artifact
of the tree approximation.

Just as ordinary general coordinate invariance
may be regarded as the local gauge symmetry
corresponding to the global Poincard algebra ob-
tained from the restriction

& "(x)=g "+ (u"„x', (13)

where g ~ and ~„,= —cv„„are constants, so the
infinite-parameter local transformation of Eqs.
(10) and (ll) corresponds to an infinite-parameter
global algebra. To determine its properties we
make an analogous restriction

f„"( x)=a„"+&u",„x',
g„'(x) = c„,

(14)

(15)

Q )cine s (18)

and they define the following noncompact infinite-
parameter Lie algebra:

(19)

(20}

(21}

(22)

(23)

(24)

! of the vacuum determined by the vacuum expecta-
tion values

(25)

is only Poincare 8U(1). Consequently, neither
the Kac-Moody extension of the Poincard group
nor the mixing of internal and space-time sym-
metries of Eqs. (23) and (24) violates the Cole-
man-Mandula' theorem which states that the sym-
metries of the S matrix should be of the direct-
product form Poincard S G. The finite-dimen-

where a„~, co~,„, and c„are constants. The cor-
responding generators are

(16)

(17)
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sional subalgebra of Eqs. (19) to (24) may, how-
ever, be enlarged to Poincare @SO(1,2) since
P, ", M, "", Q „Q„Q,also close. This SO(1, 2)
symmetry was already observed by Salam and
Strathdee. '

Since the gauge parameters f„"(x)and f„'(x)
each correspond to spontaneously broken gener-
ators except for n=0, it follows that for n10, the
fields A„„(x)and cp„(x) are the corresponding
Goldstone boson fields. The corresponding gauge
fields g„,„, with two degrees of freedom, will
then each acquire masses by absorbing the two
degrees of freedom of each vector Goldstone bos-~

on g „„and the one degree of freedom of each
scalar Goldstone boson y„ to yield a pure spin-2
massive particle with five degrees of freedom.
This accords'' with the observation that the mas-
sive spectrum is purely spin 2. In a somewhat
different context, the spontaneous breakdown of
general covariance and the appearance of massive
spin-2 particles via vector and scalar Goldstone
bosons has been observed before. '

To see that the transformations on the fields in-
duced by Eqs. (10) and (11) mix the massless and
massive modes, we calculate the 4th transforma-
tion on the nth fields g„,„, g„„,

Q„P = f» P 8 «P„» + jm(n+ 2k)f» P„» + K(3lmk)g» Q Qn»-lA pl ql=-~

+ im(n —2k)f»'A „&„»—K(zmk)f» P g A» „,&A p„l=-

+»g pvn p~» tpuln-») "4 g p p(n-») ~» pg pusan-»)™~» Spurn-»)
P P P 5

(26)

+ K(™)f» Zl Lg pvl-n»l )A pl +pp -lnl»)Avl gu p l-n»l )A &l )'P

g= ~oo

Here y„' is defined by y '=Q„" „y„'e'" . In

Eq. (26), the zero-mode transformations (k= 0)
do not mix fields of different mass or spin. The
higher-jp transformations, however, do mix the
massless (n =0) fields with the higher-n fields.
Note also, as expected from the mixing of the in-
ternal and space-time generators, that they mix
fields of different spin.

Although, for simplicity, we have confined our
attention to the case of pure gravity in five di-
mensions, infinite-parameter symmetries of the
kind discussed here will also appear when we
consider more complicated theories in. higher di-
mensions and when the symmetry of the extra
dimensions is non-Abelian. There is aconsider-
able increase in complexity, however, as may be
seen from the simplest example of S'=SO(3)/
SO(2). The scalar harmonics e'"e on S' will now
be replaced by the spherical harmonics I' '(0, cp)

and the structure constants of the infinite-param-
eter algebra will be determined by the Clebsch-
Gordan coefficients. An understanding of the Kac-
Moody symmetries in these models will no doubt
be important in analyzing the question of ultra-
violet divergences.

Finally, super-Kac-Moody algebras will make
their appearance when one considers the Fourier
expansion of local supersymmetry parameters'

in more dimensions. Qf particular interest will
be those which relate the massive cV= 8 super-
multiplets" which arise from Kaluza-Klein com-
pactification of d = ll supergravity on the seven-
sphere. The fact that the scalar fields which ap-
pear massless at tree level in Kaluza-Klein the-
ories are at best only pseudo-Goldstone bosons
presumably means that their masslessness is an
artifact of the tree approximation" unless they
are the superpartners of gauge fields in an ex-
tended N& l supersymmetry multiplet, or per-
haps of chiral spin -', in N= l.
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