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Parity-Nonconserving Spin Rotation in Weak Neutron-Deuteron Scattering
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Parity nonconservation in weak nd scattering is studied at threshold where neutron spin ro-
tation might occur. The standard (Faddeev) three-body theory with an s-wave separable po-
tential is employed together with modifications introduced to account for the weak NN in-
teraction, for which I take the one-pion-exchange isovector term. I find dP/dz = 6.13 x 10
rad/cm and estimate the errors resulting from the adoption of the pertinent approximations.

PACS numbers: 11.30.Er, 12,30.-s, 24,70.+s, 25.10.-s

For about three years, the neutron spin-rotation
experiments performed at Grenoble' have been
studied by many authors. 2 The central motivation
in most of these works is the hope to get an
enhanced effect due to neutron resonance so that
invariance under parity is violated almost "strong-
ly." However, neutron resonance is in general a
complex many-particle phenomena and that makes
the interpretation difficult. The study of parity
nonconservation (PNC) in nuclei should be
motivated by the hope to understand
interaction since we still do not have a
theory for that. The existence
conserving, nonleptonic PNC weak i

already been established beyond doubt
case of T-invariance violation. )

I think that an understanding of we
ing is crucial in this context. The
reaching pp, np, and nn scattering turn
into an indispensable probe regardin
structure of the weak interaction. Se
studied weak Nd scattering and calc
metrics in the total cross section. H
pears that an experiment of neutron
on deuterium is feasible and hence th
mates seem timely.

In this Letter, the results of pertine
are presented. I consider then a sys
nucleons interacting both strongly and
now believed that at low energy, th

leading to weak NN interaction arises from the ex-
change of mesons. Thus, the weak NN interaction
graphs are similar to the strong-interaction ones,
except that one vertex contains a weak coupling
constant and the interaction is odd under parity.
The evaluation of the weak coupling constants from
basic principles is a fundamental problem which has
received much attention recently. The motivation
for this (and others') study is to shed some light on
it.

d$(Xt)/dz = —(2m/k) p Re[ (A. t —, k

the weak NN In order to solve the three-nucleon problem with
fundamental strong and weak NN interactions I use a combina-

of a flavor- tion of Alt-Grassberger-Sandhas equations4 and two
nteraction has potential formulas. 5 In fact, I do not solve the en-

(Unlike the suing three-body equations but use threshold ap-
proximations to evaluate the amplitudes by quadra-

ak Nd scatter- tures. I also assume that at threshold, the main
possibility of contribution to the weak NN interaction arises from
s this reaction the weak one-pion exchange (OPE) which is known

g the isotopic to contribute only to the isovector potential. Addi-
veral authors tion of other terms can also be studied. Finally, I
ulated asym- need to know the analytic form of the weak NN po-

owever, it ap- tentials in momentum space. These are taken from
spin rotation Eqs. (3.1) of Lassey and McKellar's work. 6

eoretical esti- Let me denote by (Xth. 2klWlh. tk, k) the weak

part of the forward elastic nd amplitude in the he-
nt calculations licity representation, where ) ~

=0, + 1 and X2
tern of three = + —,

' are the helicities of the deuteron and neu-

tron, respectively. For polarized targets the neu-
tron spin-rotation angle per unit length [in a target
whose density is p (atoms/cm')] is given by

lwl~t —,'k) —() t
——,'klwl~, ——,'k)]

in the limit k 0. It is useful to express the
partial-wave helicity amplitudes (XtX2k I W l&t&2k)
in terms of those in the LSJ representation

(LSk l W lL'S'k) = WLsq, s, (k, k)

in which channel orbital angular momenta (L,L')

and spins (S,S') are specified, since it is in these
later amplitudes that PNC is explicitly manifested
by lL —L'l =1. (The total angular momentum J
will not be specified except when necessary. ) As 1

have showns the amplitudes W (in matrix form) are
given as a distortion of weak driving terms Z" by
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strong amplitudes X. In the separable approxima-
tion for the strong NN interaction (which I adopt
throughout) the amplitudes X satisfy the usual
three-body equations X = Z + Z7 X with strong
driving terms Z and pair spectator propagators 7.
Thus, formally (bj

FIG. l. Born terms for weak Nd scattering. (a) Weak
nucleon exchange graph consisting of three-nucleon
propagation between strong (S) and weak (W) d n +p
vertices. The weak vertex is related to the basic weak NN
interaction w according to Eq. (3). (b) Intermediate
weak NN scattering. A deuteron "dissociates" strongly
into n +p, followed by weak NN scattering with the third
nucleon and a subsequent strong "recombination" of the
deuteron.

(2)W= (I+Xr)Z ( I+a X).

The weak driving terms Z" (the central quantities
throughout) are composed of weak nucleon ex-
change graphs [Fig. 1(a)] which come from P-wave
components in the deuteron wave function, and in-
termediate weak NN scattering [Fig. 1(b)]. The
weak dnp vertices y" (triangles) are expressible in
terms of the strong ones y' (circles), the weak NN
interaction w (squares), the NN free propagator
go(e), and odd-I strong amplitudes t'(odd), namely y"= [1+t'(odd) gp] @goy . Here, however, I restrict my-
self only to the St strong NN interaction (adopted also in previous works because of the enormous compli-
cations otherwise). Hence, only the term Ngoy' survives and I may write

y I, , (q', e) =
J~ q dq wl, ",

,
&

(q', q)(q —e) 'yj'»(q), (3)

in which 1' =j = s = 1 and 1 = 0. The partial-wave
w's (with p, = t„r being the two nucleons' isospin)
have been calculated in Sec. 3 of Ref. 6. Evidently,
s = 1 requires t = 0. Since I concentrate only on the
isovector part of the weak force, I have t' = 1 and
hence s'=. 1.

The main results could be summarized as follows:
(1) At threshold, the weak nucleon exchange
graphs Z ' [Fig. 1(a)] can be calculated analytically
to first order in k. (2) An approximate evaluation
of the distortion effect at threshold is given in
terms of doublet and quartet nd scattering lengths.
(3) Intermediate weak NN scattering graphs Z 2

[Fig. 1(b)] are complicated and are not evaluated
here. I reason, however, that at threshold they are
smaller than Z '. As a consequence of the above
three results I have a reasonable approximation for
the weak partial amplitudes in the LS representation

y I, (q') = VtQ tI', ', NI(u, P, m )q',

(namely W', , ) for k 0. [Clearly, only L =0,
L' = 1 are of interest here, which imply
J=S = —,',—', . The on-shell condition k2= —', (E
+u ) means that the total three-body energy E
equals —u, the deuteron binding energy. ] Hence,
by transforming to helicity amplitudes one can cal-
culate dQ/dz. I shall now briefly elaborate on points
(1)-(3) and then present the numerical results.

In Eq. (3) I use as usual yj»(q) =N/(q2+p~)
and set e = —0.2. The isovector part of the weak
NN interaction arising from OPE corresponds to
i =1 in Eq. (3.13a) and Table 3 of Ref. 6 with
m ~

= m . Apart from geometrical factors, I and 0,
and weak coupling V~ one has to integrate the term
in the curly brackets therein multiplied by
[(q +u )(q +P )] '. In the limit q' 0 the
result is then

(4)

where j = 1' = s' = 4t = s = 1, 1 = 0, and

I = (2m ) 'J dq q [(q +m„)(q2+P )(q +u )] '[1—', q2/(q2+m2—)].

The form y"= constq' is of course expected from P-wave vertices at threshold. Now I can obtain the dynam-
ical part of the weak nucleon exchange graph Z ' [Fig. 1(a)] whose formal expression is
y'(q)D (k, k', E)y "(q'). It is given in detail by Eq. (5.2) of Ref. 5. Again, I can exploit the threshold condi-
tions k, k' 0, q = ~(k+ —,

' k')
~

0 and set

y'„(q) = N(q'+P') '= NP

D(k, k', x,E) = (E —k —k' —kk'x) '=E '= —u

(Sa)

(5b)

in the pertinent equation. Notice that the threshold behavior Z"'= constk is implied by the k dependence
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of 3 IJ in Eq. (5.1) of Ref. 5. In this equation, the sum is restricted by L = 0, L' = 1, j=j' = 1, I = 0, I' = 1,
I = —,', t = 0, t' = 1, N = 0, and J= S. The final form of the weak nucleon exchange graph of Fig. 1(a) is thenZ"', (k) = Ci(S,S') (f g /47r J2) (N'/n'P )1(n, P,m~)k, (6)

where Ci(SS') is a geometrical factor which is easily determined for the four cases, SS'= —,',—', . Clearly,
dim(Z) = [L].

To assess the effect of distortion, I notice first that in the present approximation the strong amplitudesX, , (k,k') are diagonal in L and S. Secondly I intend to put XLs.Ls on shell and use XLs.Ls(k, k) —k' .
Hence only L = 0 strong amplitudes survive at threshold. The amplitude which should be added to Eq. (6) is
then given by

Xiis, iis(k, k) Jlr ( —n ——,
' k"')Z ', (k",k)k" 2dk".

I replace the strong amplitude by the corresponding scattering length as and in Eqs. (5) I set k' 0,
k k" A 0. The approximately distorted first graph is then given by

r( —n' —4q')
osis'= + sn p J "qq 2 2 2 2) osis'

q +p q +n (7)

Both the doublet and quartet scattering lengths are positive while r(x) & 0 for x & —n2. Thus, somewhat
unfortunately, the distortion acts in an opposite direction to the Born term.

Consider now Z~2 of Fig. 1(b). At threshold, it can be approximated by an expression analogous to (6):Z, (k) = C (S,S') (f g /4m J2) Yk, (8)

also that a spin-rotation experiment
med on a completely unpolarized tar-

briefly present the numerical results.
related to the strongly interacting
system are n = 0.2303 fm

m ', and N = 0.2942 fm . The
weak coupling constant is G =f„g /(4m' 2) with
g2/4n =14 and f =4.56XIQ ' as suggested by
Desplanques, Donoghue, and Holstein. To in-
clude distortion I took 7 in the pole approximation
and found that the coefficient of as in Eq. (7) is
—0.4068 fm '. With a =0.65 fm, a =6.35 fm for
the doublet and quartet nd scattering lengths, the
distortion factor is 0.7356 for —,

' S' and —1.5832
for —,

' S'. Thus in units of 6 =3.4034&10
I found Ao ——( —7.2275 fm2) k,
= ( —4.9878 fm2) k with the average ( —5.7344
fm2)k. The matter density of liquid deuterium is

po, (19 K) = 0.5 x 1023 atoms/cm 3. This gives

so that the total amplitude in the forward direction
1s

XJ(2J + I ) T

while the total cross section is (4m/k)Imf. Ex-
pressing (A. , li. , l

T lh. ih. 2) in terms of Z", „both
os &s' " &s'os are counted so that the resultant

helicity amplitudes will of course be time-reversal
invariant. Let me denote Re[ ] in Eq. (1) by
A„with P

&

= 0, + 1. It has been pointed out by Sto-

dolsky that for an unpolarized target, one should
take the average (Xb,„,)/3. It is easy to see that if

parity is conserved then A~ = —5 ~ and 50= 0. On
the other hand for the PNC interaction A&=b
and d 0 & 0. Since I am concerned with amplitudes,
there is no interference between strong and weak

d$/dz = 6.1313x 10 9 rad/cm.

In conclusion, I gave preliminary estimates for
neutron spin rotation on deuterium. The theoreti-
cal basis is Faddeev-Alt-Grassberger-Sandhas
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where C2(S,S') is a (formidable) geometrical factor and

Y=N (2n ) 'J q dq[(q +n )(q +P )] z[x 'ln(1+x) —1],

where x = 4q /m„. Evaluation of Y then gives
lZ" /Z 'l = 0.184lC2l/lCil. In the present con- parts. Notice
text I believe an omission of Z 2 is bearable. (The must be perfor
constants used above are given below. ) get.

Having obtained the partial-wave weak ampli- I can now
tudes in the LS representation, I can transform now The constants
to the helicity representation. The normalization is three-nucleon
such that =1.2412 f
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three-body theory which I have modified to include
weak NN interaction. 5 The starting equations (be-
fore use of two potential formulas) take into ac-
count the antisymmetrization, and hence the Pauli
principle is respected. The threshold nature of the
process enables me to circumvent the enormous
computational work required otherwise. As it turns
out, the result is helped by the fact that the on-shell
nucleon exchange graph is proportional (at thresh-
old) to 1/nz, and also by the large value of "a. As a
result of the low capture cross section of neutrons
by deuterium (o-, =5.21X10 ~ b at F.„=20 meV)
the pertinent experiment is feasible. '

Possible sources of errors are the following: (i)
Omission of heavier meson exchanges in the weak
NN force. The most important contribution comes
from isoscalar p exchange. In weak n-p scattering I
estimated it to be about 25'/o of the OPE terms. (ii)
Neglect of Z ' [Fig. 1(b)], discussed already in the
text. (iii) Constraints on the form of the strong NN
interaction. Comparison between the works of Ref.
3 indicates that (at least above threshold) the
results are sensitive (but not dramatically) to the
details of the strong NN interaction.
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