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Quantum Mechanical Suppression of Classical Stochasticity in the Dynamics
of Periodically Perturbed Surface-State Electrons
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The classical and the quantum mechanical descriptions of surface-state electrons which
are perturbed by a periodic force E(t) = eeZ„6(t —nT) are compared. The stochastic be-
havior which characterizes the classical treatment, and which is manifested by the energy
diffusion and ionization rates, is suppressed by quantum effects.

PACS numbers: 73.90.+ f, 03.65.Bz, 05.40.+ j

Surface-state electrons (SSE) are electrons
which bind to liquid He surfaces by the induced
electrostatic polarization. ' To a good approxi-
mation, the effective binding potential depends
exclusively on the vertical distance x through
V(x)=Ze'/x, where Ze is the induced image
charge. Because of the exclusion principl. e, the
liquid surface acts as an infinite repulsive wall.

Recently, Jensen' studied the effect of an rf
field E„=&cosset on SSE. Treating the problem
classically, he showed that this system displ. ays
chaotic features. It is known, however, that in
similar simple systems, quantum mechanical
(QM) effects suppress the classical stochasticitys
These observations led Jensen to propose the
periodically perturbed SSE as a simple micro-
scopic system where the conflicting predictions
can be tested experimentally.

We present here a comparison of the classical
and QM treatments of SSE perturbed by a periodic
field E„= e+„b(t -nT). The purpose of this work
is to show (a) that this system also displays class-
ical stochasticity which is manifested by the dif-
fusive nature of the energy gain and can be probed
by the rate by which SSE are removed from the
surface (ionization), and (b) that locatization
rather than diffusion characterizes the SSE quan-
tum dynamics, and that the ionization rate can
be used to test the degree of localization of the
SSE wave function. This study is motivated not
only by its relevance to a realistic system. Till.
now, most of the avail. able information on the
quantum mechanics of classically stochastic sys-
tems came from the discussion of periodicall. y
kicked rotors. ' ' As will be shown below, the
SSE system is sufficiently different from the ro-
tor to render the theoretical. discussion of this
problem interesting in its own right.

Measuring energies in units of the effective
Rydberg constant, R, time in units of It/R, and

position in units of the Bohr radius a, the Ham-

iltonian reads

H(t) = H, (p, m)+ V(p, t);

H, = w'-2/p, V= —Ppg, b(t-)'t~).

p and m are the dimensionless coordinate and mo-
mentum. ~ is the time interval between succes-
sive kicks and P =e ea/h. At p =0 we impose per-
fect elastic reflection conditions. The classical
dynamics and its correspondence with the QM
picture is most conveniently discussed in terms
of the action-angle variables (n, 0). The canon-
ical transformation relating the two representa-
tions is quoted in Ref, 2, and in the units used
here, H, =-1/n'. In the QM treatment we set the
initial state as an eigenstate ~n, ) of H, . Its clas-
sical analog is a phase-space distribution function
v(n, 0) =5(n -n, )/2w. The classical and QM de-
scriptions will be separatel. y discussed, omitting
proofs and technical details which will be pre-
sented elsewhere. '

Classical treatment. —The classical equations
of motion define a discrete area-preserving map
of phase space onto itself. The essential fea-
tures of this map are that at the 4th kick, the
linear momentum w„ is changed by ~m =P. The
action variable n is accordingly modified since
H, = —1/n'. Between kicks, n remains constant,
while 0 changes according to a0= co(n)T, where
~(n) =BH(n)/Bn =2/n'. Since 0 is defined modulo
2w, the "stretching and folding"' mechanism
which is responsible for the onset of stochasticity
is provided when v(n)7 &2m. This mechanism be-
comes l.ess effective as more energy is pumped,
and n increases. This is in contrast with the be-
havior of the rotor, where &u(n)-n.

The phase-space distribution is represented by
an ensemble of a few hundred phase-space tra-
jectories (n'~', 0"')» where k denotes the con-
ditions just before the kth kick. Initially, n"' = no
and the 6"' are. evenl. y distributed on the interval.
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[0,2~].
A straightforward examination of the classical.

may shows that for p ) 0 (the perturbing force
pushes the SSE azuay from the liquid surface),
the local Lyapunov exponent'Lz'" is positive
definite for all values of (n, 6). The following
properties can be analytically derived. (i) The
Sinai-Kolmogorov entropy' is proportional to
(6g P(n ))~', where angular brackets denote phase-
space averages. (ii) The mean energy gain after
N kicks is NP'. The variance of the energy dis-
tribution scales with P(n ')'~'N'~', which clearly
demonstrates the stochastic (diffusive) nature of
the system. (iii) When the SSE energy becomes
positive it is ionized and the corresponding tra-
jectory is removed from the ensemble. The ion-
ization rate per step, I~, is defined as the mean
value of [dP~(k)/dk]/Ps(k), where Ps(k) is the
number of trajectories which remain bound after
the kth kick. The diffusive nature of the energy
gain implies I„=P '/(n ') .

The estimates quoted above are derived by as-
suming that the ionization rate is much slower
than the correlation time (I.z) . This condition
restricts the range of the parameters P, v, and

n„and within this range the numerical iterations
of the classical mapping reproduce accurately
the above estimates.

The situation for systems with p& 0 (the per-
turbing force pushes the SSE touaxds the l.iquid
surface) is quite different. Given P and ~, phase
space can be divided into two regions. One cor-
responds to (n, 8) values for which the local Lya-
punov exponent is positive and the motion is mix-
ing. This region extends over the entire 0 range
for n& (3~l pl /8)'t'. At larger n values, the sto-
chastic region occupies strips near 0- 0, 2m,
which become narrower with increasing n. In
the complementary region, the motion is regular,
with Lp'"'= 0. Periodic as well as stochastic tra-
jectories are observed. Periodic trajectories
never ionize and the classical probabil. ity that the
SSE remain bound after many kicks is propor-
tional to the fraction of trajectories which are
trapped in periodic orbits. '

Quantum mechanical treatment —The wave.
function l+, ) just before the k th kick is obtained
through iterating the map'

l@„)=exp(-iH, &) exp(-i V)l%'„,)
=—exp(- i W ) I 4„,) .

The initial state l%,) is taken to be an eigen-
state In, ) of H, . It is convenient to introduce the

eigenvectors I y ) of &o and the corresponding ei-
genvalues (quasienergies) ~ . Then,

1%'„)=Q exp(-i~ k)(y„ln, )ly ) . (3)

I I I I I I I I
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F,-.», 1. The width function g(n) for various values
of p and 7. The line through the y= 0 points is drawn
to guide the e ye.

The state of the system is therefore completely
determined by the expansion coefficients (y In, ).
The probabilities p (n, )= l(y In, )l' are inde-
pendent of k. Correlation functions of the type
(+, IC, ) are expected to be quasiperiodic, and the
expectation values of observables such as the en-
ergy and its moments will be bound when the

p (n, ) are well localized in o..
The pioneering QM studies of the periodically

kicked rotor demonstrated the localization of the
rotor wave function either numerically, ' or by
showing the formal analogy with the one-dimen-
sional Anderson localization problem. '4 We
shall show below that local. ization dominates the
SSE wave function, too.

Our discussion of the SSE concentrates on sit-
uations where the perturbing-force strength P is
kept sufficiently small so that the ionization rate
is of the order 10 '/step. We can, therefore,
neglect in first approximation the continuum
states of the Hamil. tonian H„and consider only
the space of bound states In) with H, ln) =e„ln),
e„=-1/n'. The matrix V„„=(n~ p)n') is analyti-
cally evaluated' and is then exponentiated to form
the propagator exp(-iW) which is numerically
diagonalized in a space of 80-150 basis functions.
We introduce the function

b, (n, ) = exp(- P„p„(n,) lnp (n, )),
which measures the spread of the state

~ n, ) in
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the ly ) representation. This function is dis-
played in Fig. 1, for afem values of the param-
eters P and ~. For low n» A(n, ) —= 1 which im-
pl. ies that ln, ) is localized on a single eigen-
state of W. An abrupt change occurs at np= n;„
where 4(n, ) increases and approaches the enve-
lope b, ,(n, ). At 7 = 0, W = V, and A, ,(n, ) is
the maximal width which V can induce. Iterating

the QM map we cal.culated the variance of the n
distribution as a function of the kick number. In
all cases the. variance remains bound, in contrast
mith the classical result. The variance increas-
es appreciabl. y when np scans across n„;„ in a
manner similar to b, (n, ).

In order to get a better insight into the numer-
ical results, we expand W" to first order in V,
but to al. l. orders of Hp..

(4)

!(n, =10 for all. cases). Using our estimate for
n„;,(tI, ~), we expect that in all cases plotted
here, 4, should be well localized on np=10. This
is indeed observed for the systems with ~ =500,
v =1000 (P& 0), and ~=1000 (0&P& 1.5&&10 ').
The resonance structure at p =1~ 7&&10 ' and the
steep rise at P = 2 X10 ' can be explained in the
following way. A semiclassical approximation
for W in Eq. (2) is obtained by neglecting the
commutators in the Hausdorf-Baker expansion
for W. Thus, W"=HpT +V. The effective po-
tential is —2v/p —Pp, which for P& 0 reaches a
maximum V,„' =- (8~p)'~' at p=(2w/p)'~'. Hence,
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An eigenstate ly ) wil, l have a large overl. ap
with a single state In) if I ~(e„-e ) 1

& I V„ I for all
nzc n. Here, for l m I«n we find numerically that
V„„+ =Cpn'/Iml" and l~(e„—e„, )l=2wlml/n',
so that the above condition will be satisfied when-
ever n&n„;, = (2~/CP)'~'. This estimate for n„;,
was verified in all our numerical checks.

Resonance mixing of states can occur when
~(e„—e )mod2m =0, a—nd V„w 0. Such resonances
may affect strongly the value of some observa-
bl.es, as mill be shown below.

Comparing the present system with the period-
ically kicked rotor, me observe the following im-
portant differences. (1) In the rotor case, e„=n'
and V„„,= const. Hence, as np increases, local. -
ization becomes more effective, in contrast with
the partial delocalization observed for SSE. (2)
For the rotor, e„-e„,-n so that resonance con-
ditions can be expressed in terms of one fre-
quency and its harmonics. In the SSE system
resonance mixing between some states cannot be
avoided.

The effects of the continuum are approximately
introduced by projecting the exact propagator
exp(-iW) on the subspace of bound states In) .
In this subspace, exp(-iW) is not unitary, and the
probability to remain bound, (4, I+,), decreases
with k. The ionization rate is defined as in the
classical case.

The ionization rate from a pure state In) is
given by

I~(n) = J dxl(nl exp(-iPp)IX) I',

where lx) are properly normalized continuum
ei.genstates of Po. I~(n) is independent of T and
is proportional to P'n' '. A system with a local-
ized wave function shoul. d ionize with a rate which
follows I~(n), and the strong dependence of I~(n)
onn can be used to assess the value of n. In
Fig. 2 we plot I~(n =10) together with the ioniza-
tion rates cal.culated from the iteration of the
map, for various values of T, as a function of P
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FIG. 2. Ionization rates calculated in various ap-
proaches. In all cases np =10. The dashed line cor-
responds to 7=500; all the other cases were calculated
with 7 =1000.
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the continuous part of the spectrum of W" ex-
tends to negative energies, and at lower energies
resonance states with energies e„=—t/nm dom-
inate the spectrum. It is therefore expected that
the ionization rates will be strongly affected by
the threshold and resonances mentioned above,
iX i%'„) appreciably overlaps with a state ln)
whose energy exceeds V' or overlaps with a
resonance near threshold. For n, =10 (~=1000),
e„=V~,„'~ at P = 12.5&&10 ' which is beyond the
range of P discussed here. The state with n =16,
however, is resonantly mixed with the n =10
state, and e„„=V~„at p =1~ 9x10 '. e„„over-
laps with the first bound resonance when P = 1.I1
&&10 '. These values correspond quite accurately
to the observed structures. For p( 0 W" has
only a discrete spectrum so that resonance and
threshol. d effects are not expected. When ~ = 500,
p) 0 no structure is expected since no state reso-
nates with the n, = 10 state. This analysis ilt.us-
trates the sensitivity of the ionization rate as a
probe testing the finer details in the wave func-
tion.

The ionization rates calculated classically de-
pend quadratically on P and are displayed in Fig.
2. This dependence follows directly from the as-
sumption that the energy gain is a diffusive pro-
cess. The large difference between the classical
and QM predictions, especially for low values,
demonstrates again the QM suppression of the
classical stochasticity.

The approximate quantum mechanical treatment
described above is based on the assumption that
once an electron ionizes, it will. never return to
the subspace of bound states. To check the accu-
racy of this approximation, we modified the QM
mapping to include higher-order continuum ef-
fects. ' The resulting n-state distribution and
ionization rates are altered by a few percent at
most.

Conclusions. —(a) Quantal effects suppress the
stochastic features predicted by classical me-

chanics, in spite of the fact that in the SSE sys-
tem a sudden spreading of the wave function over
quasienergy eigenstates can occur. (b) The QM
ionization rates confirm the localized nature of
the SSE wave function, and display pure quantum
mechanical effects which can be qualitatively un-
derstood without invoking any assumptions con-
cerning stochasticity. (c) In spite of the essen-
tial differences between the rotor and the SSE
systems, their behavior is al.most completel. y
determined by the same featur" I.ocalization of
the wave function in the quasienergy representa-
tion. Whether this is a general feature of peri-
odically perturbed simple systems and under
which conditions delocalization may occur are
interesting questions which deserve further study.
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