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Effective-Spin Model for Finite-Temperature QCD
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An effective-spin model for finite-temperature QCD is derived by use of a variant of the
Migdal-Kadanoff renormalization group. Mean field theory and [for SU(3)] Monte Carlo
simulation are applied. to the model in order to find the deconfining phase transition. The
results are in very good agreement with Monte Carlo simulations of the full theory. Mean
field theory predicts that the deconfining transition in pure SU(N) lattice gauge theory is first
order for all N ~ 3.
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There has been a great amount of interest recent-
ly in the deconfining phase transition at finite tem-
perature in QCD. An important advance was the
work of Svetitsky and Yaffe, ' which pointed out
that it was in principle possible to construct from a
(d+ 1)-dimensional gauge theory an effective
theory in which Wilson lines acted as spins in a d-

dimensional spin system. This spin system would
have global Ztv invariance, inherited from the
underlying gauge theory. They applied renor-
malization-group ideas from the modern theory of
critical phenomena to deduce various properties of
the deconfining transition. A second advance is
due to Banks and Ukawa, 2 who showed that the ef-
fect of fermions on the Wilson lines was like that of
an external magnetic field on a spin system.

In this Letter I will derive from lattice gauge
theory an effective-spin model which describes the
finite-temperature behavior of Wilson lines. This
will be done with use of a variant of an approximate

real-space renormalization group due to Midgal and
Kadanoff. 3 The effect of fermions will be included.
A brief discussion of the results which can be
derived from this effective-spin model is included.

The Wilson form of an SU(N) lattice gauge
theory in (8+ 1) dimensions is given by

A = $ (P/2N)Tr[U(8p)+ H.c.],

where P is equal to 2N/g2. Finite temperature is
introduced into the Feynman path integral by im-
posing periodic boundary conditions in the timelike
direction, with period given by 1/T, where Tis tem-
perature. Thus, T= 1/na, where a is the lattice
spacing and n is the timelike extent of the lattice in
lattice units.

The maximum temperature in unphysical lattice
units is given by setting n =1. This case provides
an explicit, exact example of Wilson lines as
SU(N)-valued spins in d dimensions. Let us
denote Uo(i, i), the timelike link variable connect-
ing i to i, as S(i) The acti.on can be written as

3 = $(p/2N)Tr[U(t)p)+H. c.]+ (p/2N)Tr[S (j) U(j,i)S(i) U(ij)+H. c.].
S.P. (ij

(2)

This is precisely the action of an adjoint representation Higgs model in d dimensions. The dynamics are par-
ticularly simple for Abelian models: The spin and gauge degrees of freedom decouple.

If the case n W 1 could be reduced to the case n =1, this would be a powerful simplification. This can be
done, albeit approximately by use of a variant of the Migdal-Kadanoff real-space renormalization group.
The first step is a bond-moving procedure which removes the spatial plaquette (s.p.) interactions from inter-
mediate time slices and shifts the interaction to one time slice. This bond moving always increases the free
energy, as the result of an argument based on Jensen's inequality. Kadanoff has given arguments which
show that bond moving is a good approximation in the limits of strong and weak coupling.

After bond moving, the integration over intermediate spatial links can be done exactly. In these two limits
the action obtained from decimation is approximately of the Wilson form. The result is

3 = g(nP/2N)Tr [ U(t)p) + H.c.]+ $(P'/2N)Tr[ U S US+ H.c.],
S.P. l

where S(i) is the Wilson line based at i. The parameter P' is given by

(3)
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The first result has the correct weak-coupling
behavior, as can be seen as follows. One can re-
scale the continuum action so that Euclidean time
runs from 0 to 1 instead of 0 to 1/ T. The action be-
comes

pl
S = dr J d3x —,

' Tr ( T2E2+ 82) .
g2TJ 0

(6)

With the identification T= 1/na, the correctness of
Eq. (3) follows. In the strong-coupling limit, the
result is easily verified by a strong-coupling expan-
sion.

It is possible in the two limits of strong and weak
coupling to integrate out approximately the remain-
ing spatial links. In the limit nP « 1, this can be
done by a straightforward strong-coupling expan-
sion. In the weak-coupling limit P ~, one can
integrate over all gauge copies of the identity, i.e. ,
over all U(i j) of the form g(i)g (j). Amusingly,
the answer is the same in both cases. The final
result is an effective action which involves only the

where Co and CF are the coefficients of the identity
and fundamental representation characters in the
character expansion of the action. The leading
behavior of P' in weak and strong coupling is given
by

r

P/n, P large,

,
P"l(2N )" ', P small.

%ilson lines:

A = $J[TrS(i)TrS (j)+H.c.j,
&~A

where
r

p P/2N2n, P large,

2N2, (P/2N )", P small. ,

This action could have been conjectured on general
grounds: It is the simplest local action with the re-
quired Zz in variance. Note that although the
"spins" S(i) are SU(N) valued, the action does
not have the conventional SU(N) 8 SU(N) invari-
ance. This is necessary, for the spins transform as
the adjoint representation under local gauge
transformations. Thus the action can only depend
on TrS (i).

The transformation performed above is most ap-
propriate if n is small, typically 2 or 3. It does not
exhibit the correct scaling relationship between P
and n in the weak-coupling region. In most finite-
temperature Monte Carlo simulations performed to
date, these values of n have been used. For much
larger values of n and P, it is more appropriate to
use the full Migdal-Kadanoff renormalization
group. This will give a Higgs model for which the
correct scaling behavior will be manifest, but the
quantitative relationship between P and n will be
wrong. This reflects a well-knowri property of the
Migdal-Kadanoff renormalization group.

Fermions can be included in this procedure in a
straightforward way. The action for the Wilson fer-
mions is given by

&F = $K {Q(n) (1 —y„)U„(n) Q(n + p, )f(n + p, ) (1+y„)U„(n)p (n)) + $p(n) p(n),

where K is the fermion hopping parameter. It will
be useful later to distinguish the hopping parameter
for the timelike direction, K„ from K„ the hopping
parameters for the spatial directions. It is easy to
include a fermion chemical potential, but this will

not be done here. The first step in handling the
fermions is a moving of the spatial hopping terms
on intermediate time slices to the first time slice.
The inclusion of fermions destroys the variational
character of the bond moving, but this will not be
important. There is an ambiguity in the treatment
of the fermion mass term. Some portion of the
mass term in the action can be moved with the hop-
ping terms; the amount is arbitrary. In this case I
will move none of the mass term. This helps insure
that correct results are obtained in the large mass
limit of small K. After the spatial hopping terms
are moved, the integration over the fermion fields
on intermediate time slices can be performed exact-

ly. The result is a fermionic action of the same
form, with E,' and K,

' given by

K,'= nE, K,'=2"

The timelike and spatial hopping terms have rather
different effects on the effective-spin system. For
the moment, I will consider only the timelike
terms, which makes the problem trivial. The effect
of timelike fermion trajectories is that of an exter-
nal field applied to the Wilson lines. As first point-
ed out by Banks and Ukawa, this term explicitly
breaks the Z~ symmetry of the effective-spin
theory. This term will be the most important effect
of fermions if K and n are small.

The effect of the spatial hopping terms is harder
to analyze. Roughly speaking, the dominant effect
is to induce a long-ranged force between Wilson
lines. In the confining phase, this interaction
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should fall. off exponentially with the mass of the lightest scalar, meson.
The final result for the effective-spin system action after the inclusion of purely timelike fermion loops has

the approximate form

A = g J [Tr5 ( i)TrS (j) + H.c.] + QH Tr [S(i) + 5 ( i) ].,
&i~) 1

where His given by

H = 2'(2K, )". (12)

This form can be generalized in an obvious way to
include other terms which presumably occur in the
true effective action, such as next-nearest-neighbor
interactions.

Mean field theory can be applied to the effec-
tive-spin model in a straightforward way. The free
energy per site is given by maximizing

V= Wo(x) —(8dJ) t(x —2H)2 (13)

as a function of x. The function 8'0 is the generat-.
ing function for a single SU(N)-valued spin, given
by

8'o(x) =inI&t(dU)exp[ —,'xTr(U+ U )]I. (14)

Useful formulas for 8'0 are given in Ref. 4.
In the case of SU(3), I have also studied this

effective-spin model using Monte Carlo simulation.
The two methods are in very good agreement on
the phase structure of the model, and in reasonable
agreement with Monte Carlo simulations of the
underlying gauge theory. For SU(2) and SU(3)
theories without fermions, the critical values of p
are shown in Table I, where they are compared with
results of various Monte Carlo simulations of the
full finite-temperature gauge theory. In these
cases, a strong-coupling form of Eq. (4) was used to
determine p'.

It is known from Monte Carlo simulations that
the deconfining transition is second order for SU(2)
and first order for SU(3). It has been tempting to
assume that the transition will be second order for
SU(N), if N is sufficiently large. This notion is
based on the idea that it is sufficient to consider a
effective theory based only on the Z& part of the
%'ilson lines. My results indicate that it is more na-
tural to retain the full SU(N) degrees of freedom in
the Wilson lines. %hen mean field theory is ap-
plied to the model derived here, it indicates that the
deconfining transition is first order for all W greater
than or equal to 3. There are theoretical arguments
due to Gocksch and Neri9 based on the lattice
Schwinger-Dyson equations which indicate that the
large-N deconfining transition is first order. A
first-order transition is also consistent with Monte

P, (H) = 5.11 —(4.94 +0.75)H,

which should be compared with

P, (H) = 4.77 —4.0H,

TABLE I. Critical values of P for SU{2) and SU(3).

theory Monte Carlo

SU(2)

0.676
1.79
2.65

2.11
4.77
6.14

SU {3)

0 75a
18'
2, 15"
1.9 b

5 11'
5.55 d

'Ref. 5.
bRef. 6.

'Ref. 7.
"Ref. 8.

Carlo results from a reduced, large-N model. '0 It
seems likely than an effective-spin theory based
only on Ztv degrees of freedom does not provide a
good representation of the dynamics. This is easy
to understand from the effective-spin model.
Although s;=Z C Zz maximizes the action, the
contribution of such points is strongly suppressed
by the group measure.

There is currently some controversy over the ef-
fect of fermions on the deconfining transition. It is
widely held that sufficiently light quarks will elim-
inate the phase transition. However, it is an open
question how light quarks must be for this to hap-
pen. For SU(3), both mean field theory and Monte
Carlo simulation indicate that the transition does
not occur if H is greater than 0.52. This is in good
agreement with the results of Hasenfratz, Karsch,
and Stamatescu, 7 who studied the full SU(3) lattice
gauge theory for n = 2, using Monte Carlo methods
for the gauge fields combined with a hopping-
parameter expansion for the fermions. They also
give a formula for the critical value of p as a func-
tion of H. Their result is
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which I have derived from mean field theory and
checked with Monte Carlo simulation.

The results presented here are in very good
agreement with the Monte Carlo data, and consti-
tute a strong validation of current theoretical ideas
of the deconfining transition. However, these
results were derived with use of what is essentially a
strong-coupling result. This presumably indicates
that current Monte Carlo simulations have been
carried out in an intermediate-coupling region. It is
therefore very desirable that more Monte Carlo
simulations be done at larger values of n, in order
to be closer to the continuum limit.
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