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Consistent Inference of Probabilities for Reproducible Experiments
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The need for inducing a probability distribution from partial data and the complementary
problem of the analysis of an observed distribution in terms of fewer relevant variables occur
in many branches of physics. For reproducible experiments, consistency conditions which
must be satisfied by any algorithm for inferring a discrete probability distribution with given
averages are formulated. The only consistent algorithm is the one leading to the distribution
of maximal entropy subject to the given constraints.

PACS nombers: 02.50.+s, 03.65.8z, 05.20.—y

It is often the case that a few expectation values
suffice to characterize the distribution of outcomes.
Yet these values do not determine a unique distri-
bution. An inference procedure known as the max-
imum entropy method has been proposed by
Jaynes' on the basis of Shannon's axiomatic charac-
terization of the amount of "missing information. "
The scope and number of effective applications of
this method in physics and chemistry and en-
gineering5 has been constantly growing. Yet there
are many scientists who are reluctant to use the pro-
cedure because of its reliance on the so-called sub-
jective notion of missing information. Others c'on-

sider that the concept of entropy function should
not be used outside of its original contexts. In this
Letter we offer an alternative approach to the prob-
lem of induction which does not involve
Shannon's entropy nor any references to subjective
considerations. Rather, we start from consistency
conditions which must be satisfied by any algorithm
for inducing a probability distribution, for a repro-
ducible experiment. It is assumed that the algo-
rithm is uniform in that data of a given kind must
be handled in the same way. The consistency con-
ditions lead to strong restrictions on the algorithm.
The unique ensuing distribution is the very one

which results by the maximum entropy method.
The distribution of maximal entropy constrained

by the average values is the only consistent induc-
tion from the data for any experiment which can be
reproduced. The present derivation, we believe,
should help remove the usual objections raised in
connection with this method, and thus should en-
large the number of its users. Furthermore, since
we do not use the concept of the entropy we can re-
verse the usual argument and show that the infor-
mation theoretic entropy is that unique functional
of the distribution which attains its maximal value
for the consistent inference. 7

The essence of the technical problem is as fol-
lows: Given a set of n mutually exclusive and ex-
haustive alternatives, or states, and m expectation
values (A, ),

(A, ) = $A„p;,

r =1,. . . , m, m ~n —1,

of the variables 3, defined on these states and at-
taining the values A„at the state i, a normalized
probability distribution p &, . . . ,p„ is sought which
fulfills (1). Here m ~ n —1 and usually m (( n so
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that the expectation values do not determine via (1)
a unique distribution. Required therefore is an al-
gorithm, denoted here by (a), which selects a
unique probability distribution among the set of dis-
tributions which are normalized and consistent with
the data (1).

In what follows we assume that the m variables
A, = (A„,), considered as n-dimensional vectors, and
the normalization vector Ao (Ao, = 1) are linearly
independent. This can always be achieved by
reducing the number m. Say now we add other
linearly independent vectors, A +&,. . . ,A„& up to
a complete base of the n-dimensional space. Then
one can always expand

n —1—!np;= $ A.,A„;.
r 0

(2)

Ni N„
PN ~N~ j (3)

Here gN is the number of sequences corresponding
to a particular partition of N,

(4)gg = N!/N)!. . . N„!

and plays the role of a degeneracy factor.
That the experiment is reproducible is taken here

to be the requirement that the partial data (1) can
be written directly in terms of PN,

XgPg X,N;A„=N(A, ).. (5)

To interpret (5) we introduce the "sample average"

A, = N-'X, .N, A„.
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(6)

Given a particular choice for the complementary
vectors A + ~, . . . ,A„& and for their expansion
coefficients P + l, . . . , P „&, the coefficients

are uniquely determined by the con-
straints (1) and the normalization. A discrete prob-
ability distribution consistent with the constraints
can thus be represented as in (2). Required is an
algorithm which insures that the choice of the ex-
pansion in the complementary space is unique.

The consistency condition follows from our re-
quirement that the experiment is reproducible.
That is, it must be possible to carry out N (N not
necessarily large), independent repetitions of the
experiment. Given the induced probabilities (2),
the probability of any particular sequence of out-
comes, where the state i might occur N; times in N

N) N„
independent repetitions, N= XN;, is pl ' p„".
Collecting together all the experiments where each
state i occurred the number, N;, of times irrespec-
tive of its order in the sequence, we have the proba-
bility of a particular distribution N =—(N&, . . . ,N„) of
outcomes

Then (5) is the requirement8 that averaging the
sample average over all possible outcomes should
give the expectation values over the elementary
probabilities p, . Defining the variables B,N by

B„-= XNA„ (7)

we write (5) as average values over P~

(B,) = ggB,gPg=N(A, ). (8)

The constraints (8) then determine uniquely the
first m +1 expansion coefficients p, p, . . . , p,

We have now two alternative routes to the distri-
bution of outcomes in N independent repetitions of
the experiment. Starting from the state averages

(A, ) we can use (a) to derive the elementary prob-
abilities p; and then obtain PN as the multinomial

distribution (3). Alternatively, we can use the sam-
ple averages (B,), cf. (8), and use the algorithm
(a) directly to get the distribution gg.

The algorithm (a) will be called consistent if
these two routes yield the same results, g~ = P~.
Our consistency requirement is thus summarized by
the commutative diagram

(a)
'(A, ) -a '.

sample, ~ l, independent
averaging repetitions

, (B,) -P-,
(a)

To apply the consistency condition in a meaningful
fashion it is necessary to require that the algorithm
operates on all possible input in the same manner.
Given the input in the form (1) the algorithm
determines the corresponding probability distribu-

These are m constraints on the probability distribu-
tion PN. They are of the same nature as the m con-
straints (1). Given these m constraints our algo-
rithm (a) determines a unique normalized distribu-
tion gg which is consistent with (8).

The discrete probability distribution g~ can also

be expanded in a complete basis as in (2). The
space is I dimensional, != ( „, ). The first
m +1 linearly independent basis vectors are taken
to be the B„'s defined via (7) in terms of the m + 1

A, 's. The other I —m —1 linearly independent vec-
tors are arbitrary. The algorithm (a) determines the
choice of the complementary basis and the
I —m —1 expansion coefficients p, + &, . . . , p, l

I—
—in(gg/g-) = p, „B„g.

r 0
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tion using one and the same procedure. We shall
take this requirement to be part of the consistency
condition. The necessary and sufficient condition
for consistency is our central result and can be stat-
ed as the following.

Theorem. —The algorithm (a) is consistent if and
only if (a) is the maximum entropy procedure.

Proof. W—e show first that the consistency condi-
tion implies the maximum entropy procedure. The
statement "(a) is consistent" implies Pg = Og or

n

ln(gg/gg) = XN;lnp;.

Using (2), (3), (7), and (9) in (11),

I— n —1 1— n —1 n —1

/Ip+ p, „Bg= Xp, , NiA I+ p, ,Bg= N( XA.„A„)=~pN+ XX,B
r 0 i 1 r 0

The vectors 8,~ are linearly independent in the l-

dimensional vector space. Since the expansion (9)
is unique it follows from (11') that

P0= RON' P r = ~r l~r ~n —1;

The consistency condition implies that all the ex-
pansion coefficients //, , in (9) vanish at least for
r ~ n. But the index n has no special standing in
the I-dimensional space. It can take up any value
from m+1 to I. Therefore the consistency condi-
tion (11') on the one hand and the requirement
that (a) can handle all possible input in a uniform
fashion require that p, , 's vanish for r ~ m + 1,

Pr =0,

for all r such that m + 1 ( r ~ l —1. (12)

h. pN = ln[ Xggg exp( —X„A.„XN;A„)] (16)

and the other m Lagrange multipliers, A.„are deter-
mined from (8), by solving

tipliers introduced therein in the process of seeking
the constrained maximal value of entropy function-
al.

That the maximum entropy algorithm is con-
sistent in the sense of (10) has been previously
shown by Levine. ' Indeed, the maximum entropy
method applied with the constraints (8) leads to

Qg = gg exp( —Nh. p
—$,A. , XN;A„), (15)

where

It follows that the A. , 's must vanish for m+1
~r ~n —1 or

m—inpt= A. p+ XX,A„ (13)

and that
m—ln(og/gg) = ZpN+ XZ„B„g.

The reader familiar with the maximum entropy
method will recognize the X, 's as the Lagrange mul-

=N(A, ), r = l, . . ., m.

The solution (15) can also be written as

where

m

p;=exp( —h.p- XA.,A„).

Using the identity

(17)

(18)

(19)

(20)

that it can be consistently applied for any finite
number of independent repetitions. The maximum
entropy method was shown to provide the one and
only uniform consistent algorithm.

The consistent algorithm is already known as the
maximum entropy method. But here entropy
emerges as a consequence of a consistent induction
and is not invoked in the specification of the algo-
rithm. Entropy here is that unique functional of
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N/

$~g// ] I[p; exp(&p) ] ' = [p; exp(&p) +. . . +p„exp (ip) ) = exp(zpN )
I ~]

together with Eqs. (16) and (17), the distribution
(19) is identified as the maximum entropy solution
to the problem (1). This completes the proof of the
theorem.

Without reference to information theory or to a
very large number of independent repetitions (the
Boltzmann point of view) we have been able to
derive the maximum entropy algorithm. The key
elements were that the algorithm operates on all
data in the same way (i.e. , that it be uniform) and
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the probabilities which is maximal for the con-
sistent algorithm designed for a reproducible exper-
iment.
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