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Transverse Electromagnetic Waves with Non-
zero E-B

In a recent Letter,! Khare and Pradhan demon-
strate electromagnetic wave equations with nonzero
E-B values and obtain nonzero values of
q= —fﬁ-_}i d*x and s=f(E2——B2)d4x. The first
result is not actually that remarkable. The latter
two seem to stem partly from an error in analysis
and partly from introducing static uniform com-
ponents of E and B in the long-wavelength limit
that fill the universe and give the nonzero g and s.
The transversahty and mutual orthogonality of E
and B for ordinary light waves are usually demon-
strated for unidirectional, propagating waves. How-
ever, the quantities ¢ and s need not be zero for
static fields, and such nonzero values can be intro-
duced artificially as the zero-frequency limit of a
spectral representation. There are nevertheless
finite-frequency waves for which E-B is nonzero.?
Consider a single wave, here labeled (1), to have
EV =B and propagation vector k! Superim-
posing a second wave labeled (2) propagating in the
opposite direction, k= —k?, but with E?
:1_9‘),(2)—E (D then gives a standing wave with
E-B= 2(E“))2[cos(2k.x)+cos(2wt)] which has
nonzero tlme -averaged E-B.

To construct solutions of the above type with
nonzero g, consider (instead of sine waves) isolated
square-wave pulses having the polarization proper-
ties above and encountering one another. During
the brief moment that the waves overlap, one has
finite nonzero E - B, and zero all other times. If one
now considers an infinite train of such pulses going
in each direction, then E-B will apparently have a
finite time and spatial average. But such wave
trains have dc components of E and B. What we
are really doing is filling the universe with uniform
E and B fields, in which case (at least for an empty
Euclidean universe) there is no prohibition against
having nonzero ¢ and s. The condition for nonzero
E-B, in the above example, is that the wave forms
have nonzero path integrals: A(n)dn =0,
where 4 (kx + k#) is the wave form and A4 can be E,

B, or the vector potential. Such waves simply have
a static component, as does a single square wave ris-
ing -from zero initial amplitude. In a spectral
representation, the issue is then how the amplitude
varies as k — 0.

Khare and Pradhan also take a faulty limit. One
sees in their Egs. (15b) and (15c) that their g and s
vary as sin2a and cos2a, where « is the phase of
the above standing wave, written as sin(Kt+a),
etc. [their Egs. (5) and (8)]. If so, these two
‘“‘gauge and Lorentz-invariant properties’’ depend
on the choice of the zero of the arbitrary time coor-
dinate, and are not even Galilean invariants. In the
case of g, for example, this result seems to follow in
Eq. (12b) from rewriting 2sin(Kt+ a)cos(Kt+ o)
as sin(2a)cos(2K1), apparently on the assumption
that the time integral over the sin(2Kt) piece from
— oo to + oo is symmetric and therefore identically
zero. Such a ‘‘symmetry’ is gauge noninvariant.
The average of these two limits is indeterminant,
and cannot be constrained to fall at =0 regardless
of the (arbitrary) choice of r=0! In any case, it
seems obvious by inspection that the time average
of sin(kt+ a)cos(kt + a) is zero if kis nonzero. In
a separate erratum,> the same authors still claim to
obtain their original results [*“...q, s, and E are all
finite and identical to Egs. 15(a) to 15(c)’’] under
even more general conditions.
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