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Transverse Electromagnetic Waves with Non-
zero E B

In a recent Letter, ' Khare and Pradhan demon-
strate electromagnetic wave equations with nonzero
E B values and obtain nonzero values of
q= —fE Bd x and s= f(E2 —B2)d4x. The first
result is not actually that remarkable. The latter
two seem to stem partly from an error in analysis
and partly from introducing static uniform com-
ponents of E and B in the long-wavelength limit
that fill the universe and give the nonzero q and s.
The transversality and mutual orthogonality of E
and B for ordinary light waves are usually demon-
strated for unidirectional, propagating waves. How-
ever, the quantities q and s need not be zero for
static fields, and such nonzero values can be intro-
duced artificially as the zero-frequency limit of a
spectral representation. There are nevertheless
finite-frequency waves for which E B is nonzero. 2

Consider a single wave, here labeled (1), to have

E)
') =B,(ti and propagation vector k„(t) Superim-

posing a second wave labeled (2) propagating in the
opposite direction, k„' = —k„2, but with E,
=B~~ =E~(ti, then gives a standing wave with
E B=2(EP ) [cos(2kx)+cos(2cut)] which has
nonzero time-averaged E .B.

To construct solutions of the above type with
nonzero q, consider (instead of sine waves) isolated
square-wave pulses having the polarization proper-
ties above and encountering one another. During
the brief moment that the waves overlap, one has
finite nonzero E B, and zero all other times. If one
now considers an infinite train of such pulses going
in each direction, then E B will apparently have a
finite time and spatial average. But such wave
trains have dc components of E and B. What we
are really doing is filling the universe with uniform
E and B fields, in which case (at least for an empty
Euclidean universe) there is no prohibition against
having nonzero q and s. The condition for nonzero
E B, in the above example, is that, the wave forms
have nonzero path integrals: f A (q) dq & 0,
where A (kx + kt) is the wave form and A can be E,

B, or the vector potential. Such waves simply have
a static component, as does a single square wave ris-
ing from zero initial amplitude. In a spectral
representation, the issue is then how the amplitude
varies as k 0.

Khare and Pradhan also take a faulty limit. One
sees in their Eqs. (15b) and (15c) that their q and s
vary as sin2u and cos2u, where u is the phase of
the above standing wave, written as sin(Kt+u),
etc. [their Eqs. (5) and (8)]. If so, these two
"gauge and Lorentz-invariant properties" depend
on the choice of the zero of the arbitrary time coor-
dinate, and are not even Galilean invariants. In the
case of q, for example, this result seems to follow in
Eq. (12b) from rewriting 2sin(Kt+ u) cos(Kt+ u)
as sin(2u)cos(2Kt), apparently on the assumption
that the time integral over the sin(2Kt) piece from
—~ to + ~ is symmetric and therefore identically
zero. Such a "symmetry" is gauge noninvariant.
The average of these two limits is indeterminant,
and cannot be constrained to fall at t =0 regardless
of the (arbitrary) choice of t=0! In any case, it
seems obvious by inspection that the time average
of sin(kt+ u) cos(kt+ u) is zero if kis nonzero. In
a separate erratum, 3 the same authors still claim to
obtain their original results [".. .q, s, and E are all
finite and identical to Eqs. 15(a) to 15(c)"] under
even more general conditions.
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