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Shear Viscosity of the Hard-Sphere Fluid via Nonequilibrium Molecular Dynamics
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The shear viscosity q of the hard-sphere fluid, at volumes of 1.6 and 2 times the close-
packed volume, is computed with use of nonequilibrium molecular dynamics. At high shear
rate ~ we observe a phase transition in which the system undergoes two-dimensional ordering
in the plane perpendicular to the flow, accompanied by a sharp decrease in q. For small ~, no
evidence is found for the square-root dependence on ~ reported by previous investigators.

PACS numbers: 62.10.+s, 61.20.Ja

Nonequilibrium molecular dynamics (NEMD)
has been used to study the shear viscosity of simple
fluids via a number of different techniques. ' 7 In
part, at least, these calculations are regarded as al-
ternatives to the Green-Kubo method in which the
viscosity coefficient is obtained from the time-
correlation function of the momentum-flux tensor.
In contrast to the equilibrium-ensemble Green-
Kubo method, the NEMD calculations impose
shear boundary conditions on the system which typ-
ically (although not always) are expected to drive
the system to a steady state. The viscosity coeffi-
cient, then, is obtained from the time average of
the momentum flux divided by the shear rate.

Interest in NEMD calculations includes both the
"nonlinear" regime of shear rates ~ sufficiently
large that the viscosity deviates significantly from
its small-~ limit, as well as the approach to the e = 0
limit. For simple intermolecular interactions, the
first regime involves rates of shear which are orders
of magnitude larger than those accessible experi-
mentally in real fluids (but comparable to those ob-
tained in the experiments of Ackerson and Clarks
on colloidal suspensions). Nonetheless, it is impor-
tant in understanding the mechanism whereby the
viscosity observed in NEMD calculations for simple
fluids decreases with increasing shear rate that we
consider the limiting case in which particle motions
are dominiated by the shear forces.

In the present Letter, we study the shear-rate
dependence of q for a system of hard spheres in the
dense-fluid regime using the "isothermal Lees-
Edwards" technique which has been described pre-
viously. 7 We consider a system of N hard spheres,
each a diameter 0., in a cubic volume V=L, sub-
ject to the quasiperiodic boundary conditions of
Lees and Edwards. 7 The system is maintained near
a fixed temperature by rescaling the peculiar veloci-
ty of each particle, pY, (t) —e„vT(y;(t)), in which

r, (t) and t7, (t) denote the position and velocity of
particle i, y;(t) is the y component of r;(t), and

e„uT is the expected steady, linear profile of the
velocity in the x direction, vT(y) = (y —L/2)~.
Calculations have been made at two values of the
volume 7 = V/Vo, given in units of the close-
packed volume Vo=No. 3/2ti2, in the dense-fluid
regime, r = 2 and 1.6, and for two different system
sizes, N = 500 and 4000.

Large-shear-rate behavior. —In Fig. 1 we plot the
observed viscosity coefficient relative to the Enskog
value qE for both densities as a function of the
shear rate, the latter scaled by the Boltzmann mean
free time, too. The Green-Kubo results9 to (for the
same finite systems) are also included as the i=0
points. The statistical uncertainties associated with
results are smaller than the plotting symbols, except
at the smallest shear rates. For the r =1.6 calcula-
tions for which 500 and 4000 particle results are
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FIG. 1. Shear viscosity coefficient q of hard-sphere

systems relative to the Enskog value as a function of
shear rate ~ in units of the inverse Boltzmann mean free
time too, from nonequilibrium (open symbols) and, at
e =0, equilibrium, Green-Kubo (filled symbols) molecu-
lar dynamics. The inset shows the small-~ data on an ex-
panded scale. The dashed line shows the prediction of
mode-coupling theory, using q(0) = 1.52qE.
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given, we note that the shear viscosity coefficient
appears to be insensitive to system size. The
smooth decrease of rt with increasing a appears
qualitatively similar to that reported by Evans" for
the Lennard-Jones (LJ) fluid at the triple point.
The curve shown in Fig. 1 is the e'i fit reported by
Evans and plotted over the range of his calculations.
In rescaling the Evans results to our units, 7 we have
taken the LJ parameter o- as the equivalent hard-
sphere diameter. This identification yields a re-
duced volume of r =1.68 for the LJ calculation, a
value quite close to our high-density value.

At larger shear rates we observe a decrease in the
viscosity coefficient, which is particularly dramatic
for the r = 1.6 system. To understand the origin of
the dramatic decrease in q, we plot a snapshot of
the 500-particle system at 7 = 1.6, ~op= 0.593 in Fig.
1, at the final time of the trajectory. The figure
shows the projection of the center of each sphere
onto the y-z plane, i.e. , normal to the flow. From
the remarkable alignment of the particles, it seems
clear that the configuration of the system has
undergone a two-dimensional ordering whereby in-
dividual particles remain localized within a cylinder
parallel to the direction of flow. The cylinders are
arranged in a triangular lattice which is somewhat
distorted by virtue of the fact that the y-z projection
of the system is a square and thus incommensurate

L

with the unit cell for the lattice.
Similar snapshots for other large values of the

shear rate show that for both densities the sudden
decrease in q with a (at roughly 0 4/t. pp for r =1.6
and 0.8/top for 7 = 2) signals the onset of the phase
transition, with the systems consisting of coexisting
(low-density) fluid and (high-density) two-
dimensionally ordered phases, separated by an "in-
terface" lying more or less normal to the z axis.
With increasing shear rate, the system appears to
become a homogeneous, two-dimensiona11y or-
dered phase. The ~ interval over which two phases
coexist is much broader for the lower density. We
note that the viscosity coefficient reported in Fig. 1

for the two-phase region represents an effective
value for the entire system.

To confirm this structural picture, we have also
studied the position of individual particles with time
for a number of the systems whose late-time
snapshots appear ordered. After a short initial in-
terval during which the particle motion appears
chaotic, the particle becomes localized, either
within a y-z layer (if in the fluid region) or very
near a particular y-z lattice position.

The nonisotropic ordering (observed through the
pair-correlation function) reported by Heyes et al.
in their study of the LJ triple-point fluid at shear
rates up to i prp= 013 (as well as higher densities at
similar rates of shear) appears to be a precursor to
the phase transition observed here. The fact that
the directional self-diffusion coefficients observed
for the LJ systems were of similar magnitude in all
three coordinate directions would seem to indicate
that these systems remain fluidlike.

Finally we have looked for evidence of hydro-
dynamic instability or other nonlaminar structure in
the high-~ regime by computing the Fourier com-
ponents of the x component of velocity,

N

ak(t) =2% 'Xexp[2miky, (t)/L]
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FIG. 2. Snapshot of a 500-particle hard-sphere system
at a volume of 1.6 Vp and at a shear rate of 0.593/rpp, pro-
jected onto the plane normal to the flow. The circles are
drawn at the center of each particle; the hard-sphere di-
ameter is 0.12L.

as suggested by Evans. ' For both k = 1 and 2, we
find that the time average, (~ak~z), deviates only
slightly from the equilibrium expectation value, tz

irrespective of a. This contrasts with the observa-
tion by Evanstz of a large increase of ( ~nk ~z) with
shear rate, above ~ rpp = 1.8, for the 32-particle
soft-sphere fluid at a reduced volume r =2.02. It
seems clear that the sharp decrease in q associated
with the phase transition is not related to the effect
observed by Evans. Indeed, we find (~o.„~z) to de-



VOLUME 52, NUMBER 15 PHYSICAL REVIEW LETTERS 9 APRIL 1984

crease slightly with increasing e (above 0.8/ rpp) for
T = 2, for ~ as large as 2 0/. tpp, suggesting that the
Evans effect may occur only at lower densities, or
perhaps for small system sizes.

Small-shear-rate results. —In the small-shear-rate
regime, the behavior of the viscosity has been the
subject of conflicting theoretical studies. The semi-
phenomenological theory of Ree, Ree, and Eyring's
yields a sinh (e)/e dependence for q. A result of
similar mathematical form has been obtained by
Eu. '4 On the other hand, the theories of Kawasaki,
Gunton, and Yamada's and of Ernst et al. '6 predict
an ~'i dependence, with coefficients which differ in
detail but are of similar magnitude. The latter au-
thors, however, conclude that their theory should
apply for shear rates much smaller than those typi-
cal of the NEMD calculations. While early NEMD
evidence seemed to support the sinh '(~)/~ form, ~

more recent calculations have been interpreted in
favor of the e'i dependence, ""but with a coeffi-
cient which is two orders of magnitude larger than
predicted by the theories.

The behavior of the shear viscosity for small
shear rates is shown in the inset of Fig. 1 in which
only the data for small ~ are shown. Evidently our
hard-sphere data show no evidence of the ~' cusp
reported by Naitoh and Ono, s Evans, " and Hoover
et al. 5 The present calculations, which are consid-
erably more extensive than previous results, extend
to somewhat smaller values of ~. The figure also
shows the square-root dependence given by the
theory of Ernst et al. ,

'6 as the dashed curve, drawn
through the intercept Vl p 1.52. ——Because the
theoretical coefficient is so small, the curve appears
as a straight line. Evidently our data do little to
support the theory.

Much attention" '7 '9 has been given to the
difference between the predictions of mode-
coupling theory and molecular-dynamics results
both for the time-correlation function p„(t) for
shear viscosity and for the shear-rate dependence of

The present calculations tend to minimize the
latter disagreement. With respect to p„(t), more-
over, the evidence for actual disagreement, at least
for hard spheres, 9 is not particularly compelling.
Nonetheless, it seems true that the theories both
for p„(t) and for g(e) fail to account for the princi-

pal effects found in the molecular-dynamics results.
The predictions of mode-coupling theory appear to
be overshadowed by quite different effects in both
the Green-Kubo and the NEMD calculations,
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