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Kinetics of Domain Growth: Universality of Kinetic Exponents

Gary S. Grest, David J. Srolovitz, and Michael P. Anderson

(Received 30 January 1984)

We have studied the growth kinetics of several systems with highly degenerate ground
states which were quenched from a high (T» T, ) to a low temperature (T=—0). The
mean domain size R increases algebraically with time as R =—t", where surprisingly the value
of n is observed to fall into one of two universality classes for all the models studied. We ob-
serve a distinct crossover from one universality class to the other as the spin interaction is
varied.

PACS numbers: 68.55.+b, 05.50.+q, 61.50.Cj

Recently, there has been considerable interest in
studying the kinetics of domain growth. ' Early
work2 in this field attempted to explain the growth
of domains in simple ordering alloys which had
been quenched from above T, to below the critical
point in systems like Fe-Al or Cu-Au. These sys-
tems may be simulated with use of an Ising model. 3

Theoretical studies, s computer simulations, 2 and
experiments all show that in this type of model the
characteristic length R of a domain increases alge-
braically with time, R (t) =—t", where n = —,

' .
When one goes from the simple two-component

Ising model to more highly degenerate systems,
Monte Carlo simulations have shown4 6 that the
value of n is typically less than —,'. For such highly
degenerate systems, the topology of the domain
boundary network plays an important role in modi-
fying the kinetics. Our studies4 of the kinetics of
ordering for the two-dimensional Potts model have
shown that the exponent, n, decreases continuously
from a value of —,

' for Q = 2 to a value of 0.41 for

Q & 30. Mouritsen studied the ordering of N2
molecules into a herringbone structure governed by
an anisotropic planar rotor model on the triangular
lattice and found n = 0.25. Since our large- Q
results could be interpreted in terms of a discretized
model of a continuous spin, our results may be
compared with Mouritsen's. 5

The fact that two different values of n have been
observed in topologically connected systems of
domain boundaries suggests that a variety of types
of kinetic behavior are possible. One explanation of
this type of variety is that the exponent n depends
on the details of the model. If this is correct, addi-
tional simulations employing different model as-
sumptions should produce different values of n

However, it is also possible that there are universal-
ity classes for kinetic exponents, and the two
models studied to date are in different classes. This
is a very intriguing possibility since if it were true,
this would suggest that kinetic phenomena at
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FIG. 1. Interaction potential V(S, —S, ) vs

[S,—S&I =min((S, —
S&~, )Si —S~ +0~) for p= 1, 2, and 4

for Vt [Eq. (2a)l and 0'=4, 8, 12, 16, 20, and 24 for V2

[Eq. (2b)].

T« T, have features in common with critical
phenomena. We already know from earlier stud-

ies, on systems which are far from equilibrium,
that the growth is temporally self-similar and the
structure function or cluster distribution satisfies
scaling.

In this Letter, we report the results of our com-
puter simulations which provide evidence for the
existence of universality classes for kinetic growth
phenomena. In these simulations, we have moni-
tored the kinetics of domain growth for a general-
ized Q-state Potts model, where we have chosen Q
large ( = 48). The Hamiltonian employed is

H = —X„„[1—V(S,,Sj) ],

where S; is one of the Q states of the i th spin and

V(S,,Si) is the spin interaction, specified below.
The sum is taken over nearest neighbor (nn) spins
on a triangle lattice. Using standard Monte Carlo
procedures, we study the domain growth of a sys-
tem orginally quenched from a high T to a very low
one. To reduce boundary effects, we employ very
large systems (200&& 200 sites), with periodic boun-
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dary conditions. In all cases, after the system was
quenched to T =0—, we ran our simulations for at
least 3000 Monte Carlo steps per spin and averaged
our results over 2-5 runs.

In the present simulation study, we considered a
number of different potentials. For V(S;,S,)
=1—5(S;,S~), where 5(S;,S~) is the Kronecker
delta, the model reduces to the standard Potts
model. This delta-function potential of the Potts
model may be generalized to include nonequivalent
interactions between sites of unlike orientation
(S,,S&). In terms of the language of the Q-state
Potts model, the continuous spin 0; is discretized as
0, = 2rr S,/Q. This leads naturally to our first poten-

tial,

1

p~(S, -S,)
Vt(S;,S,) = sin +1 (2a)

where we have considered p= 1, 2, and 4. Note
that this potential is linear for small arguments
S;—S, . The Q+1 term in the denominator was
choosen to ensure that the ground state is a simple
ferromagnet with a Q-fold ground-state degeneracy.

The second class of potentials considered is the
Read-Schockley potential, 7 which describes the
orientation dependence of low-angle grain boun-
daries in metals and ceramics,

V2(S;,SJ) =
—(S, —S,} (S, —S,}

ln
Q' eQ'

1, (S;—SJ}~ Q',

(S,—S,} «Q',
(2b)

(2c)

where Q' is a parameter and (S; —SJ} = min (~S;
—S, (, (S,—S, +Q~). For Q=48, Q"=7 can be
used to parametrize tin and Q'=12 for lead. s In
Fig. 1, we plot this potential for several values of
Q', along with Vt for three values of p.

In addition to these two potentials, we considered
a linear-isotropic potential,

'(S, - S,}/Q", (S,- S,}—Q",

(S,-S,.}~ Q.

non-power-law growth and that following an initial
transient the system rapidly becomes pinned.

We have fitted the domain radius by the form
R (t) —R (t=0) =Bt, where B is a constant. In
Fig. 2, we show logtoR vs Iogtot for V, with p = 1

1.25

While this third potential is very simple, it has one
feature which is rather interesting. Because the po-
tential is linear, it is possible to insert a domain
between two other domains, without any change in
energy, as long as (S,—SJ}~ Q . For example, if a
domain of orientation 1 is next to a domain of
orientation 9, it is possible to insert any domain of
orientation 2—8 in between the original two
domains with no change in energy, as long as
QI) 8

In choosing these potentials, we avoided poten-
tials with nondiscrete boundaries, for example, the
clock model:
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=18

V(S, ,SJ) = —cos[27r (S,—S~)/Q j+ 1.

A study9 on the clock model for Q =26 found an
exponent n which claimed to be "not inconsistent
with n=0.5" for the late stages of growth. We
reexamined the growth kinetics for the clock model
( Q = 26, 48) employing much larger systems
(4X 104 sites) and longer times (6000 Monte Carlo
steps) than in the previous study. Our simulations
conclusively show that the clock model exhibits
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FIG. 2. Plot of logioR vs log&ot for V&, p=1, and V2,
0'=21, 18, and 12, after the system was quenched to
7 =0. Dots represent data that have been averaged over
four simulations and the curves have been displaced
along the y axis for clarity. The slope for long times is
extracted from a least-squares fit by R (t) —R (t
=0) = Bt
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t = 3000 MCS/SPIN t = 7000 t = 12000

FIG. 3. The evolution of the quenched domains for Vt, Eq. (2a), for p = 1 at various times as indicated at the bottom
of each snapshot.

and for V& with Q"=21, 18, and 12. The remark-
able result is that for all three values of p for Vt, for
Q'~ 20 for V&, and for Q'~ 8 for V3, n = Iim is
found to be 0.25 +0.02 in agreement with the ear-
lier results by Mouritsen. 5 However, for Q'~12
for V& and Q'~ 4 for V3, we find n =0.42 +0.02,
in agreement with our previous results for the Potts
model, where we found n=0.41+0.02. Only for
14Q ~ Q'~ 19 for Vq and Q"= 6 for V3 do we find
values for n which do not fall within these two
universality classes. For these values, we found
that n =0.37 for Q'=14, n =0.33 for Q'=16, 18,
and 19 for Vz, and 0.30 for Q'=6 for V3. This is
presumably a crossover effect, though we cannot
rule out a third universality class with n =—0.33.

In Figs. 3 and 4, we display the domain boundary
configuration at three instances of time during the
evolution of the domains for Vi with p =1 and Vz

with Q =12, respectively. The domain size distri-
bution functions for potentials Vz and V3, in the
parameter range where the growth exponent n
=0.42, are very similar to those observed for the
Potts model. When Q' is large enough to produce
non-Potts-like kinetics, the domain size distribution
functions are wider than for the Potts model. The

widths of the distributions and the maximum
domain size divided by the mean domain size were
observed to increase with increasing Q".

The domain boundary configurations for poten-
tials Vq and V3 in the range of Q" where n =0.42
closely resemble those seen for the Potts model. 4

At larger values of Q', the domain boundary con-
figurations for all three potentials appear qualita-
tively similar. In this parameter range, the micro-
structure may be characterized as having a relatively
uniform distribution of medium and large size
domains with intervening regions composed of a
large number of small domains. No doubt, the
presence of regions of small domains is a conse-
quence of the decomposition of domain boundaries
into many boundaries when the difference in Q
between adjacent domains, (S;—S,I, falls within the
linear regions of the potentials. In this sense, the
regions of small domains correspond to wide boun-
daries instead of many individual domains. Mour-
itsens reached similar conclusions for his Nz on
graphite model. In the linear regions of the poten-
tials, the disappearance of a low-angle boundary
does not coincide with a decrease in energy and
hence domains surrounded by low-angle boundaries

t = 3000 MCS 'SPIN t = 7000 t = 12000

FIG. 4. Same as Fig. 3 for Vq, Eq. (2b), for Q"= 12.
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are very stable. In the limit that Q' goes to its max-
imum value, 24, for the linear potential, V3, nearly
all of the observed domain boundaries are wide.

It appears that the domain of attraction of the two
observed exponents is rather strong, since as seen
in Fig. 1, there is very little difference between V2

for Q'=12 and 20 or for Q' near 6 for V3. Yet,
the crossover from one universality class to the oth-
er occurs over a small region in the parameter
space. These results suggest, for the first time, that
there exist universality classes for kinetic exponents
and that the exponent n is not dependent on the de-
tails of the model. The apparent difference be-
tween these two classes appears to be affected by
the energy dependence of the low-angle boundaries.
If the domain boundaries are stable against decom-
position into low-angle boundaries, an exponent of
0.42 is observed. This is the limit of sharp domain
boundaries, for which the Potts model is a good ex-
ample. When boundaries readily breakup into a
number of low-angle boundaries the kinetic ex-
ponent, n, is approximately 0.25. This is the wide
boundary limit, for which V3 with Q' large is a
good example.

In conclusion, we have performed Monte Carlo
simulations to study the kinetics of domain growth
for a wide variety of systems. We find that there
exist two distinct kinetic domain growth universali-
ty classes when the number of components, Q, is
large and nonconserved dynamics are employed.
These classes are (1) n =—0.42, which corresponds
to sharp domain boundaries, for example, a Potts
model, and (2) n =—0.25, which corresponds to

wide domain boundaries. These results should be
contrasted with the domain growth exponent ob-
served in nearest-neighbor Ising models, n= —,'.
The difference between the Ising results and the
high-Q results, presented here, can be attributed to
the topology of the domain boundary network. The
importance of the topology increases as Q increases
and hence, the fixed points n =0.42 and n =0.25
should be expected to approach —,

' as Q decreases. 4

A study of the dependence of n on Q for the poten-
tials examined here is currently being pursued.
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