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%e present the first application of localization theory to plasma physics: Density fluctua-
tions induce exponential 1ocalization of longitudinal and transverse electron plasma waves,
i.e., the eigenmodes have an amplitude decreasing exponentially for large distances without

any dissipative mechanism in the plasma. This introduces a new mechanism for converting a
convective instability into an absolute one. Localization should be observable in clear-cut ex-
periments.

PACS numbers: 52.25.6j, 52.35,Py, 71.50.+ t

In this Letter we show the relevance of the con-
cept of localization by disorder to the propagation of
waves in plasmas with a fluctuating density. In con-
trast to the usual WKB picture, a fluctuating density
can prevent the energy of a wave from propagating
to infinity, and instead imply an exponential spatia1
decay of this energy without any dissipative
mechanism. The normal modes are localized and
the plasma becomes a resonant cavity without sharp
boundaries. That can allow the plasma to switch
from an amplifying to an oscillating state: A con-
vective instability can become absolute. A simple
plasma experiment is proposed to evidence our pre-
dictions. It also should allow the study of localiza-
tion as a function of disorder in a more continuous
way than in solid-state physics.

Localization was first discovered in connection
with the metal-insulator transition in a crystal with
randomly scattered impurities: %hen the eigen-
functions for energy near the Fermi level become
localized, the metal turns into an insulator (for a
general review on localization, see Thouless'). For
one and probably also two spatial dimensions, local-
ization is a property of all the eigenfunctions of the
Schrodinger operator —6+ P (x) for almost all

spatially homogeneous random potentials P"(x),
whatever the amplitude 8'of the randomness. The
eigenfunctions are decreasing exponentially at in-
finity, and the inverse of the rate of the exponential
decay is called the localization length, (, and
depends both on the disorder H'and on the eigen-
value 8' (the energy of the state). In a three-
dimensional situation, for a given disorder of ampli-
tude 8; there exists a critical value 8', ( W) of the
energy 8' below which eigenfunctions are exponen-
tially localized, and beyond which they are not. We

emphasize that localization exists for almost all real-
izations of the medium and is not the consequence
of a phase cancellation due to averaging over the
various configurations of disorder. Localization is a
stronger property than total reflection by a semi-
infinite medium, considered for instance by Sulem,
Frisch, and co-workers2 for Schrodinger or
Helmholtz equations. This appears in the fact that
the Schrodinger operator with a random potential
has a pure point spectrum, i.e., an eigenvalue spec-
trum, 3 whereas the absence of transmission is a
priori compatible with a continuous spectrum. Lo-
calization contradicts the usual image of wave pro-
pagation in a random medium as a series of in-
dependent scatterings. It can be physically inter-
preted in the two following ways: (i) A wave with a
given frequency interferes destructively with
wavelets randomly scattered by the medium; the
amount of scattered wavelets with random phases
increases with the distance so that the global ampli-
tude eventually vanishes. (ii) With probability 1

the wave meets large regions where the potential
has a periodicity that implies gaps in the Floquet or
Bloch analysis for the given energy.

Longitudinal or transverse electron plasma waves
in an unmagnetized plasma (hereafter referred to as
l or t waves) are described by an equation of the
type

where Q is the electric field, and P ( x, t)
=to~(7, t)/v with v=c for twaves4 and v= j3vT
for l waves [ in that second case x must be one
dimensional for Eq. (1) to be correct4 s]. First con-
sider the case where density is time independent.
Then the time Fourier transform of Eq. (1) yields
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the time-independent Schrodinger equation

(2)

where the energy 8'=cu2/v2; cu is the pulsation of
the mode. If the plasma density is random, locali-
zation appears as stated above. Localization is not
the exclusive property of the Schrodinger equation.
Therefore, we can expect that other waves whose
dispersion relation depends on the density can lo-
calize in a fluctuating plasma, provided that the
dependence on the density is local (in particular,
the density should not be involved in convolu-
tions). This is likely to be the case for the equa-
tions '7 [ —5+&(x)—'8']&=0 and '7 h /=0
that rule l waves in dimension 3. The relevance of
localization for lower hybrid waves could strongly
modify the image of propagation with scattering
predicted by a WKB treatment. 6

When the wave with pulsation tp is excited at
x = 0, a source term o.5(x) must be added on the
right-hand side of Eq. (2). As usual, the way to
solve this new equation is to add to it a small imag-
inary term i e corresponding to an artificial dissipa-
tion term and then find the solution p of the equa-
tion, which is of course the Green's function G, be-
fore letting e 0 in the physical quantities comput-
ed with G. We note that

G(X) = —I[ —5+&(7)—&—if] 'nh) (x),
which, in the case of localized modes Pj with eigen-
value S~, can be rewritten

G(x) = Xjnjr j (x)yj(0)/(8', —8' —ie).

For a given localized mode Qj, let its maximum
value be at x, . If x does not coincide with x = 0,
the coefficient Qj(0) which appears in the response
of the system to a source term shows that the
mode, if excited, is more weakly excited the larger

~ ~xj~ ~/((8'j) is, where $(S'j) is the localization
length at eigenvalue 8'j (this is reminiscent of the
excitation of modes in a resonant cavity). Physical-

ly, there always is a finite frequency bandwidth for
a source of waves, and hence there is an infinite
number of excited modes: This is also true in the
case of localized modes, since it follows from locali-
zation theory that the eigenvalues are then dense.
The most strongly driven modes are those with a
corresponding

~ ~x, ~ ~
of order less than or equal to

((8'j). Hence we predict an exponential spatial de-
cay of l and t waves excited by an antenna in a fluc-
tuating plasma, provided that the values of 8' corre-
sponding to the frequency bandwidth lie in the
domain of localized energies.

As yet no analytic formula is available that gives
explicitly the localization length ( for physically
relevant random potentials and for all regimes of
disorder. For one-dimensional systems, the locali-
zation length can be computed7 for a small disorder
W and scales like W '. For larger disorder, we
must resort to numerical computations, made easy
by the fact that, for one-dimensional systems, the
localization length is the inverse of the Lyapunov
exponent of Eq. (2) when rewritten as
d (P,dP/dx)/dx =M(x) (P, dP/dx) Th. is equation
yields a matrix equation in the case of the simple
random density n(x) = np+5n(x), where np is the
average density, and where 5 n (x) is constant on
mutually decorrelated steps of length l, and takes
values between —b, n and 6 n with a uniform proba-
bility density. Let $= l, dQ/dx, $j=$(jl, ),
lfl j = tjl(jl ), 0)& = np8 /Epm, v = c for t waves and
v = J3v for l waves, E= (cv2 —~0~) l2/v2, and
W= (co~i,2//v2)hn/n. One gets (Qj+ t, $j+ t)

Mj (lflj Qj), where Mj is a 2 x 2 matrix that
depends on Sn(jl, ). The Lyapunov exponent
y = l,/( depends on the parameters E and W, and is
numerically computed. Figure 1 displays y vs W/E
for various values of E. Localization theory shows
that ( is not very sensitive to the model for pn (x),
and other random fluctuations with the same rms
b, n and correlation length l, should give similar ('s.
For instance consider an l wave with a wave number
k when An =0, such that kA. D=0. 1 which corre-
sponds to a negligible Landau damping. For a den-
sity fluctuation with l,/A. D

= 10 and 5 n/n = 3
X10 2, one gets y=3x10 2, i.e., (=5k. with
A. =2m/k. This corresponds to W=E=1, that is,
to a nontrivial localization ( W» E). The condition
for the WKB description of an l or t wave in the
fluctuating plasma is hk/l, (( k2, where Ak is the
variation of k related to An/n This con. dition is
easily rewritten as W((2E3j2. It is weakly veri-
fied for the previous example though localization is
fairly strong. Notice, however, that taking into ac-
count the complex turning points of Eq. (2) makes
it possible to derive a WKB formula consistent with
localization.

For higher-dimensional systems, the computation
of the localization length is much harder. One pos-
sibility would be to make a continuous analog of the
scaling method used for discrete equations and
based on the study of the sensitivity of eigenvalues
of Eq. (2) in a box when changing boundary condi-
tions. 9

Till now, we only considered a static potential, P,
but, in a plasma a random density is also evolving
with time. We are interested in two different situa-
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FIQ. 1. plot of y=l, /( vs W/E for E=1 (curve a),
0.5 (curve b), 0.2 (curve c), 0.1 (curve d), and 0.05
(curve e); the dashed curve corresponds to y/2 for E = 5.

tions. In the first one, the random density is mov-
ing in the plasma with a constant velocity u much
smaller than u: This is the case if, for instance, ran-
domness is produced by a one-dimensional spec-
trum of ion-acoustic waves. The wave equations
can then be rewritten in a frame moving with the
density profile and this, together with an appropri-
ate change of phase on Q, leads directly to an Eq.
(1) with appropriate Wand O'. Previous conclusions
about localization are hence applicable. Therefore,
localization should be experimentally observable,
for instance, for i waves in a magnetized plasma
with ion-acoustic fluctuations.

The second case of interest is the one where the
potential, or the density, p (x, t) is a random func-
tion both with respect to space and time, or is a ran-
dom function in space varying with time without
conserving a fixed profile, in opposition to the situ-
ation discussed above. The analysis of Schrodinger
equations with time-varying potentials is much less
developed than the one with static ones. The locali-
zation phenomenon, strictly speaking, does not ex-
ist any longer; localization is a subtle interference

phenomenon and phase memory is lost when the
potential changes. However, we can rely on some
adiabatic treatment. Since the eigenvalues are a
countable dense set in the spectrum, one cannot ap-
ply the usual adiabatic theory; but one can use the
fact that wave functions for near energy levels are
very separated in space. (Incidentally, this phe-
nomenon is associated with the vanishing of the
static conductivity in condensed-matter physics
when the Fermi level lies among the energies of lo-
calized states. ) We then expect that localization
will still manifest its effects when the characteristic
localization time is small with respect to the correla-
tion time r, of Y(x, t) or, in other words, if the en-
ergy can fill a cavity of length ( during the correla-
tion time, that is, if r, » (/w, where w is the ve-
locity of the energy of an incoming wave (it can be
taken as the group velocity of the wave at 8'= 0 if
8'is not too large).

In the case of / waves, the localization
phenomenon must be discussed in the face of
another phenomenon, namely, Landau damping:
For a local excitation of a frequency (e.g. , by an an-
tenna in a plasma) it competes with localization for
damping the wave amplitude of a driven mode with
real frequency t0. In fact, values of t0 close to t0~
are well localized and experience little Landau
damping, whereas the opposite occurs for large
values of t0 (typically 2'~). We can therefore ex-
pect a crossover of these two regimes for some in-
termediate value of t0. Landau damping induces
the temporal damping of a normal mode with a
given frequency. If there is a gentle bump instabili-
ty in the plasma, results for the WKB regime'0
show that the damping can change to a growth in a
given range of frequencies. Thus localized modes
can grow exponentially with time, i.e., absolute ins-
tability can set in; a better knowledge of the wave-
number spectrum of localized modes has to be
achieved for a full understanding of these wave-
particle interaction effects.

It has been known for several years" that some
absolute parametric instabilities which turned into
convective ones by introduction of a density gra-
dient could be made absolute again if random fluc-
tuations were added to the gradient. This mecha-
nism for turning convective instabilities into abso-
lute ones seems very different from the one we
have proposed above, since a constant density gra-
dient from —~ to +~ destroys the localization
created by the random fluctuations. '

Here are some conclusions and discussions: (i)
The previous results show that the phenomenon of
localization of waves by disorder should be experi-
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mentally observable in a plasma. This Letter
proves it at least for Langmuir waves in a magnet-
ized plasma, in the presence of ion-acoustic noise
traveling in one direction. (ii) We suggest to study
the localization-delocalization transition in three-
dimensional plasmas. The disorder can then be
easily varied in contrast to usual condensed-matter
samples. But the first experimental check should
be on one-dimensional localization; as a matter of
fact, the first step could be the experimental obser-
vation of the effect of a coherent density fluctua-
tion (for instance an ion-acoustic wave) on an

d'or

r

wave, such that 8' corresponds to a gap in the
Mathieu equation. (iii) Modification of the gentle
bump instability into an absolute one, due to locali-
zation, is one more phenomenon that could come
about in the type-II solar-burst problem (notice that
the existence of localized modes implies the ex-
istence of two reservoirs of counterstreaming
plasmons that makes efficient the conversion of i
waves into r waves at 2co~). (iv) The issue of the
destabilization of localized modes motivates the
study of the space Fourier transform of localized
eigenfunctions, a new question raised by the appli-
cation of localization to plasma physics.
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