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Quantum Oscillations anti the Aharonov-Bohm Effect for Parallel Resistors
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The transmission coefficient between two terminals of a one-dimensional ring with
arbitrary scatterers is calculated exactly as a function of enclosed magnetic flux, y. At
low temperatures, where the inelastic diffusion length is larger than the size of the ring,
its conductance follows from the Landauer formula. Oscillations of the conductance as a
function of the characteristics of the scatterers and of rp (with a period go =he/e) are
found. The oscillations persist even when the elastic scattering is strong.

PACS numbers: 72.10.Bg, 03.65.Bz

It is known that quantum interference effects
are present in superconducting devices as well
as in very small pure metallic elements. In par-
ticular, in the presence of magnetic flux, Aharo-
nov-Bohm-type oscillations' may occur in doubly
connected systems. ' ' For a normal metal the
period of these oscillations is y, =hc/e. It has
been believed, though, that such effects should
vanish once the elastic mean free path of the
electron is smaller than or of the order of the
system's size. Recently, it was pointed out' that
in dirty metals another type of oscillation, of
period y, /2, may occur. ' Later, it wa.s argued'
that thermodynamic properties of a normal ring
may have a periodicity y, in an external magnet-
ic flux also in the case where the el'&ti& mean
free path is small. An ac-Josephson-type effect
follows. This is related to current oscillations
in the presence of a time-dependent flux which
induces a dc voltage. Such oscillations may also
occur in systems exhibiting the quantized Hall
effect. "

In the present Letter we discuss the transport
properties of a one-dimensional disordered
metallic ring. We derive an exact expression for
the transmission, T, through such a device as a
function of the transmission and reflection coeffi-
cients of each of its channels. With use of the
Landauer formula, " T may be related to the con-
ductance of this ring. We find a very rich be-
havior as a function of these coefficients. Some
of these results may also be relevant to optical
and microwave systems. We next extend the
treatment to include the effects of a magnetic
flux through the center of the ring. In this case
the conductance exhibits oscillations zenith a Peri
od yo. All these quantum interference effects,
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FIG. 1. Schematic picture of the system. The arrows
denote the various transmitted and reflected amplitudes,
defined close to the junctions. The phases accumulated
through the channels are absorbed in the scattering
coefficients (r, , r,-', t,-, and t;').

both in the presence and the absence of the mag-
netic flux, exist also in the limit of strong scat-
tering. Even in this limit there are situations
where T oscillates between I (total transmission)
and 0 (total reflection). Thus, the oscillations
are not destroyed, in principle, by elastic scat-
tering —in the presence of which eigenstates with
well defined (space-dependent) phases still exist.
Obviously a strong enough inelastic scattering
will, however, wash out these effects. This
should occur once the inelastic diffusion length
becomes smaller than the dimensions of the ring,
and it suggests the possibility of very interesting
and peculiar temperature dependences of the con-
ductances of such rings. Our treatment is valid
for the case of each branch being a single channel;
estimates for the effects of many channels are al-
so made, and the relation with the results of Refs.
7 and 8 is discussed.

The geometry of our system is described in
Fig. 1. Each branch of the ring is described""
schematically as a single scatterer connected to
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Following Shapiro" we describe each junction
by a 3 &3 scattering matrix 8,

0 -I/W2 -I/W2~
S= l -I/v2 1/2 —1/2

(-I/v 2 -1/2 1/2

an ideal, mathematical/y one-dimensional, chan-.
nel. All phases and scattering effects along the
channels are absorbed in the parameters describ-
ing each scatterer. These parameters are t, (i.
=1, 2) and t, the transmission amplitudes from
the left and from the right, respectively, and r,.
(r ), the reflection amplitudes on the left (right)
of the scatterer. Notice that time-reversal and
current-conservation requirements, "which im-
ply t;=t and

(2)

(the asterisk denotes complex conjugation), are
satisfied also when the phases of each path are
absorbed in t;, etc. Moreover, when magnetic
flux q is applied through the center of the ring,
a possible gauge transformation for the trans-
mission and reflection amplitudes yields t, -t,e ',

(8-=&y/cp, ), and the transformed t's and r's
still satisfy Eq. (1).

This can be rewritten as

where each diagonal element, S, , (i = 1, 2, 3), de-
notes the reflection amplitude of the ith channel,
and off-diagonal elements S,, (i w j) are the trans-
mission amplitudes from channel i to j. In Fig.
1 channel 1 of the left-hand-side junction is
chosen to be that of the incoming amplitude (unity)
whereas channel 1 of the right-hand-side junc-
tion is that of the outgoing amplitude (E). We do
not expect our results to depend qualitatively on
the choice of the junction's scattering matrix.

Writing down the linear relationships among
the various amplitudes at the junctions and scat-
terers and using sum and difference variables
(e.g. , x, +x„etc.), we find after some a.lgebra
that the total transmission amplitude of the ring
is given by

2 t, t,(t, ' + t, ') + t,(r, —1)(l —r, ') + t,(r, —1)(1—r, ')
(3)

{t,+t,)(t, '+t, ') -(2-r, -r,){2-r,'-r, ')

e &e+~e ~e
E=2 De"' +Ee " +C '

where

A = t,'t, + t,(r, —1)(1—r, '), B = t, t,' + t,(r, —1)(1 —r, '),

(4)

D=E =t,t„C=t,'+t,'-(2-r, -r,)(2-r, ' —r, ').

The transmitted intensity (p-=28) is

T=-
I
E~'=4 n + p cosQ+ p' sing

y+6cosg+ecos2$ '

where n =
I A I

' +
I
B

I
', P = 2 Re (AB*), P ' = -2

xim(gB*), y= IDI'+ I&l'+ ICI', 5=4Re(DC*),
and a=2!Dl'. According to I andauer's formula
the conductance is given by G=(e'/wh) T/(1 —T).

Let us first consider the case with no magnetic
flux (q =0). Even in this case T may exhibit
oscillations as a function of the phases of the t's
and r's '4 !which influence the coefficients n,
y, 5, and ~ in Eq. {5)j. When t, = 0, an appro-
priate choice of the phases of r, and r, ' may re-
sult in T=1 or T=o." That is, by tuning the

nonconducting branch we can affect dramatically
the transmission through the other channel. This
effect is present also when I t, I

and
I t, I are finite.

In particular, we can obtain T=0 even when I t, l

! «
I t, l. On the other hand, one can improve the

conductance of a scatterer by connecting to it in
parallel a very poor (tuned) conductor. Notice
that these resonances will disappear once the in-
elastic diffusion length l1„=(Dr )' ' (v.;„ is the in-
elastic scattering time) becomes of the order of
the size of the ring, L. Thus we may obtain
dramatic changes (either increase or decrease)
of G with the temperature. Another interesting
effect may occur if we expose one of the channels
(say channel 1 with I t, l

«
I t, I ) to, e.g. , electro-

magnetic fields, whose effect is similar to in-
elastic scattering. This may cause a dramatic
change in the transmission of the weakly scat-
tering channel. When t, =t, =t, Eq. (3) reduces
to I = t. We expect this result to hold also for
an n-branch system. Thus when the temperature
increases the conductance should increase from
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G, = (e'/vh)
~
t

~
'/(1 —

~
t

~

') to Ohm' s law G = n G, .
We now turn on a magnetic flux y. In general

T is periodic i.n y with a period y„although one
can find specific conditions on the coefficients in
Eq. (5) to enhance the effect of the second har-
monic and make the effective period q, /2. Our
effect is thus different from the one reported in
Refs. 7 and 8. This effect may be very strong
even in the limit of strong scattering (l,&

«L
«l;„). Assume, for example, that [t,[- ~t, ~-t
«l. In tl)at case, unless very special phase re-
lations hold, n-P-P'-5-&'-t', e-e'-t', and
y-1. These are then oscillations of a period pp
and an amplitude -t' appearing on a. constant
background of -t' (thus T may vanish for certain
values of y). In addition there are also (second-
harmonic) oscillations of a. period y, /2 and a
smaller amplitude - t'. If

~ t, ~ «t, the relative
size of the oscillations becomes smaller (and
again, the harmonics with a period y, /2 are
even smaller). A more detailed analysis of the
structure of T as a function of the various phases
is now in progress.

Finally we comment on the possibility of observ-
ing such effects experimentally. Values of l;„ in
the range of 10' A and even more have been re-
ported for the -1 K temperature range. One may
achieve l;„»L by using temperatures, say, in
the 10 mK range (with L-1 pm) or by using
modern nanpmeter-scale fabrication techniques'
I L -10' A) at T-1 K. These estimates are based
on an inelastic time 7;„-5/kT, a rough phenom-
enological estimate which usually gives a correct
order of magnitude and a temperature dependence
which is not far from that observed experimental-
ly. One may consider also spin-orbit scattering.
However, the relevant length for this mechanism
is for light metals as large as -0.5 p,m. As far
as the contribution to, e.g. , the magnetoresis-
tance due to electron-electron interactions is con-
cerned, it is believed to be additive" to the local-
ization contribution. Thus, it is extremely im-
probable that the two contributions mill exactly
cancel the effect obtained here. Notice also that
in some cases of two dimensions for the tempera-
ture range discussed here the interaction con-
tribution to the magnetoresistance is expected to
be much smaller than the localization one. Anoth-
er requirement that should be satisfied is the
one dimensionality of the ring. The periodicity
in the magnetic field is satisfied even if there are
a number of modes in the channels. However, in
order to observe large amplitudes of relative
oscillations and sharp resonance effects one

should require that not too many modes, whose
effects may cancel, be present. The question of
many transverse modes requires further work.
It is of interest whether or not modes in the rad-
ial direction and in the direction parallel to the
flux could behave differently, which may mean
that long thin cylinders may also exhibit these ef-
fects. The oscillation" with period y, /2 is due
to backscattering interference —waves coming
back to the initial point after traversing the whole
ring in opposite directions" and thus accumulat-
ing a phase difference of 40. This is valid for
strict Aharonov-Bohm flux or when the variation
of the flux across the sample wall is negligible.
For N parallel channels this effect adds coherent-
ly and yields a relative change of order unity in
the resistance. For our effect (of period y, ) the
parallel channels may be thought to add random-
ly and therefore the relative effect to be of order
N ' '. For X-10'-10', which is attainable, this
difference may well be balanced by the require-
ment that the waves propagate t~ice the length
without inelastic scattering for the effect of Refs.
7 and 8 as compared to ours. Also, one may
argue that O(Pt ) terms will exist in our case as
a result of all the interferences among the Ã
channels in each of the two arms of the ring. If
these add randomly, one will still get an O(1)
relative effect. Clearly, this needs a more de-
finitive calculation.

We emphasize that our results are exact for un-
correlated electrons in the one-dimensional ge-
ometry studied. For example, multiple reflec-
tions and trans missions through the junctions and
the scatterers are taken into account, as in ser-
ies additipn pf Landauer-type obstacles. "' '
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