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Inversion of Polyatomic Rovibration Spectra into a Molecular
Potential Energy Surface: Application to CO2
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The experimental vibrational energies for the stretching modes of the CO2 molecule are
used, with a recently developed method for generalizing the Rydberg-Klein-Rees inversion
technique to polyatomics, to obtain a two-dimensional potential surface for nonbending CO2.
The resulting surface appears quite accurate; this demonstrates the ability of the method to
obtain actual polyatomic potential surfaces and constitutes the first successful determination
of a polyatomic potential surface by inversion of spectra.

PACS numbers: 33.10.6x, 34.20.8e, 35.20.Jv

The method of choice for obtaining diatomic potential energy surfaces is the inversion method developed
by Rydberg, Klein, and Rees (RKR). ' In a previous publication2 we suggested a method for extending the
inversion to polyatomic molecules, and tested it on a model system of two coupled oscillators. In this Letter
we present results of an inversion of spectroscopic data for '2C' 02.

The RKR inversion is performed by obtaining the values of f and g for each available spectroscopic state,
where f and g are experimental quantities defined as
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with the experimental vibrationalirotational energy dependence given by

E,=to, (n'+ —,) —tox, (n'+ —,) +toy, (n'+ —,) +B,J(J+ I) —n, J(J+1)(n'+ —,) D,J (J+1—) +. . . .

The values of f and g are then related to the classi-
cal turning points X, and X& by

f= —,(X, —X,), g= —,(I/X; —I/X„).

A plot of the energy levels versus the correspond-
ing turning points forms the potential.

Since the RKR inversion is based on the WKB
approximation, which applies only in one dimen-
sion, it cannot be directly extended to polyatomic
molecules. We get around this problem by basing
our method on the self-consistent-field theory
(SCF) for molecular vibrations. In this way we de-
fine separable vibrational modes on which to per-
form one-dimensional inversions. These inversions
create sets of single-mode SCF potentials from
which we obtain the multidimensional potential sur-
face.

The SCF procedure for coupled vibrational sys-
tems has been defined and tested by Bowman' and
Kern4 and their collaborators. We have shown' that
the SCF procedure can be simplified by replacing

the quantum matrix elements by their semiclassical
equivalents, resulting in the semiclassical SCF
method (SC-SCF).s It is the SC-SCF that underlies
our extension of the RKR inversion to polyatomic
molecules. We will here briefly develop the poly-
atomic inversion method and then apply it to the
bending vibrations of CO2. The resulting two-
dimensional potential surface is equivalent to the
cut in the full potential at the equilibrium bending
angle of 180'. This potential is compared to the
same cut in a very elaborate fitted surface.

The inversion is defined in a set of coordinates
chosen such that the kinetic energy is diagonal.
The potential may then be described as a sum of
single-mode terms and a coupling term:

~(q q ) I 1(ql) + 2(q2) + ~12(ql'12)'

The SC-SCF theory is based on obtaining single-
mode energies from a set of coupled equations of
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the form (for mode 1)

([Et( "' —Ut'"' (qt)]2p, t I'i'dq, = (m+ —,')qrh,

where m and n are the quantum numbers in modes 1 and 2, respectively, E1 " is the single-mode energy in
mode 1 which is dependent on both m and n, p, 1 is the reduced mass, U1 is the effective potential defined
as

'12r
Ut'"' (q» = Vt(q»+ J ~ V12(ql 'q2) l~2 '"' (q»~dq2 (2)

P2 " is the momentum in mode 2, and q1„q1I,
q2„and q2I are turning points of U1" and U2
respectively. Equation (1) is simply the SCF exten-
sion of the Bohr-Sommerfeld quantization condi-
tion. Since the RKR inversion is derived from the
Bohr-Sommerfeld quantization, Eq. (1) and its ana-
log for mode 2 can be inverted in a similar manner
to give, f, , gt, f2, and g& for each available energy
level. These f and g values can then be related to
the turning points to give U1" and U2 for all
available n and m.

To complete the inversion we must obtain V1,
V2, and V» from the U's. This is done, for mode
1, by extrapolating the U1", available for

1 1
n =0, 1, 2, ..., to n = ——,. At n = ——, the turning
points in mode 2 are equal, q2, = q2I, and from Eq.

(2) we can define

U " ' (q, ) = V, (q, ).
V2 can be obtained similarly. Rewritting Eq. (2) as

q2. V(2(qt q2) („)
( ) dq2= Ut" (qt) —Vt(qt),Jq21 P (m, n) (q

one sees that the right-hand side is now available
for all values of q1 and n', a systematic numerical
procedure for solving for V» can then be given.
With V1 V2, V12 available, the inversion is com-
plete.

Our primary reasons for choosing CO2 as a first
application of the inversion are twofold: First, the
completeness and accuracy of the overtone spec-
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FIG. 1. The effective potential U~"' along the q coor-

dinate for n =0, 1, 2, 3, 4 (solid lines), and the bare po-
tential V~ = U~(" ' 't (dashed line).

FIG. 2. As in Fig. 1, but for mode 2 along the g coor-
dinate.
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FIG. 3. The cut of the full potential at bending angle
of 180'. (a) The potential from inversion. (b) The po-
tential from Ref. 10. The contour levels are 2000 cm
(c) The difference between (a) and (b), contours
between + 3000 cm ' with 400-cm ' increments,

trum of C02 is excellent; and second, the sym-
metry of the potential surface simplifies the inver-
sion procedure. In order to keep this problem tract-
able, we have only inverted the two-dimensional
cut of the surface at its equilibrium bending angle
of 180'. This two-dimensional cut of the potential
represents the first step in obtaining the full surface
in three coordinates, and produces (Fig. 3) contour
diagrams which are both easily interpreted and
straightforwardly compared to experiment.

The coordinate system used for the inversion, in
terms of the internal C-0 stretching displacements
r~ and r2, is

q= {rt+r2)/U2, (= (rt —r2) j&2.

These are simply the normal-mode coordinates,

symmetric and antisymmetric, respectively. Any
single-mode potential must be symmetric in g, con-
straining its turning points such that
This symmetry relation simplifies the inversion pro-
cedure by requiring only three turning points to be
obtained from the fand g values.

The energy values used in the inversion are ob-
tained from very accurately fitted spectroscopic
constants (~ 's, x 's, y 's, n 's, 7 's, . . . ) .9 This al-
lows us not only to freeze out the (degenerate)
bend by placing its quantum number at —1, but
also to exclude the effects of Fermi resonance.

Some of the resulting single-mode effective po-
tentials, U's, along with the bare single-mode po-
tentials, V's, are given in Figs. 1 and 2. The two-
dimensional potential is shown in Fig. 3, and is
compared with a potential surface previously
derived by trial-and-error-fitting to the same nu-
merical data. %e also show the difference between
the two. %e observe that the inverted surface
agrees closely with the fitted surface near the axes
of the normal displacement coordinates (q= 1.64
A, (=0.0 A). Further away from the axes the de-
viations become larger. Since the near-axes region
is weighted heavily in the fitted potential, these
large deviations are not surprising. The dissociation
properties of the inverted potential appear better
than the fitted one.

Further tests of our inverted potential by compu-
tation of observable properties such as intensities
will be given elsewhere. ' %e feel that the success
of the SC-SCF/RKR inversion procedure in obtain-
ing the potential of Fig. 3 is a promising step to-
wards its general application in finding potentials
from vibrational data. As an inversion scheme, the
method avoids the arbitrariness of trial-and-error
fitting, and provides better insight into the relation
between potential and data. Thus, the RKRlSCF
method may become important for obtaining
molecular potential energy surfaces.
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Munchen.
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Both the computation of the full surface (inclusion of

the bend) and the intensity calculation require slight ex-
tension of the simple formalism given here, and will be
described elsewhere.


