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Effective Couplings of Grand Unified Theories in Curved Space-Time

Leonard Parker and David J. Toms
Department of Physics, University of Wisconsin Mil-waukee, Milwaukee, Wisconsin 53201

(Received 20 June 1983)

The curved-space-time generalizations of SU(5) grand unified theories are considered.
The high-curvature limit of the effective gravitational and cosmological constants, as well as
other coupling constants not present in flat space-time, is studied using renormalization-
group methods. These effective coupling constants appear in the gravitational field equations
and may have important cosmological implications.

PACS numbers: 12.10.En, 04.50.+h

The role played by grand unified theories in cosmology is currently of great interest. By use of the renor-
malization group, it is possible to predict the high-curvature behavior of the gravitational and cosmological
constants. As we shall see, these predictions may be important for the early universe.

Coupling constants not present in the flat-space-time Lagrangian appear both in the generalized Einstein-
Hilbert action and in the terms linking the Higgs scalars to the scalar curvature R. These additional terms,
which are required in curved space-time for renormalizability, appear in the following part of the total La-
grangian:

L,„,„=A+ttR +ntR&"o R„„~ +n2R""R„„+n3R —(&R tr($ ) —gHRH"H.

Here A and ~ are related to the cosmological con-
stant, A„and Newtonian gravitational constant, G,
by &= —(8~G) 'A, and K= (16mG) '. The
scalar field multiplets P and H are the Higgs fields,
and the trace is over the group indices of $. In ad-
dition to L,„„,the total Lagrangian will have contri-
butions from the gauge, fermion, and scalar fields
appropriate to the grand unified theory under con-
sideration. The detailed expression, which is not
essential for the present discussion, may be found
in Parker and Toms. '

As is well known, 2 renormalization requires the
introduction of a renormalization point p, with
dimension of mass. The bare couplings must be in-
dependent of p„ leading to renormalization-group
equations for the effective coupling constants.
These equations show how the effective couplings
change as p, is scaled by a dimensionless parameter
s. It can be shown that in curved space-time the
parameter s corresponds to a scaling g„„s g„„
of the metric. By consideration of curvature in-
variants, such as R, it follows that the large-s limit
gives the high-curvature behavior of the theory.
The renormalization-group functions required to
study this high-curvature behavior are found from a
computation of the renormalization counterterms in

L,„„.We have computed these counterterms, ' us-
ing the background-field method, 5 for the Georgi-
Glashow theory6 (in the unbroken-symmetric
phase) as well as for an asymptotically free generali-
zation of that theory. Because we deal with the un-
broken symmetry and with a background metric,

our results are most relevant to the range between
the grand unified theory (GUT) and Planck scales.

For the asymptotically free theory, the coupling
constants which do not appear in L,„,„are all ex-
pressed in terms of the gauge coupling constant g.
All of these couplings are then small at high curva-
ture as a result of asymptotic freedom. Conse-
quently, definite results may be obtained by pertur-
bation theory for the high-curvature limits of A, ~,
and the other effective coupling constants appearing
in L,„„.Results may be obtained for other GUT's
provided that, as is generally assumed, the coupling
constants do not grow too large.

We find that the value of the effective gravita-
tional constant 6 at early times may be altered from
its present value. The effective a; coupling con-
stants, which are coefficients of terms in the action
that are quadratic in the curvature, are found to
grow large in magnitude at high curvature. This
behavior is valid even if these constants are ex-
tremely small or zero today. The cosmological con-
stant A, exhibits similar behavior. In the high-
curvature limit, A, becomes large and positive re-
gardless of its present value. This may have impli-
cations for inflation in the early universe.

The fact that quantum corrections can lead to
terms in the effective action that are not present in
the classical action is related to the idea of induced
gravity. ' One difference is that in the present work
we are concerned with the high-curvature limit of
the theory, whereas the work on induced gravity
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has been mainly concerned with obtaining unique
predictions for A, and 6 at low curvature.

Solutions to the renormalization-group equations
in the asymptotically free theories of Chang et at.
for the effective coupling constants (& and (H are
found to grow increasingly large in magnitude at
high curvature in the absence of further constraints.
However, within the context of an asymptotically
free theory it is natural to search for a solution in
which the coupling constants are proportional to
some power of the gauge coupling g. We find that,
although this cannot be done for g; (i = P or 0), it

is possible to find a solution of the form

(, (s) = g'(s) r, , (2)

where (, = g, ——,', the r, are constants, and g (s) is

the running gauge coupling constant. The r; are
determined by the two-loop contributions to the
renormalization-group functions which govern the
behavior of (;(s). A full discussion is given in Ref.
l. In view of the asymptotic freedom of g(s), it is

evident from Eq. (2) that in the high-curvature lim-
it (;(s) —,

' as s ~. In conjunction with the
asymptotic freedom of the Higgs self-couplings, this
behavior will suppress particle creation by isotropi-
cally expanding universes. "

The effective coupling constants a;(s) are found
to be

nt(s) = Q. t(1)—,lns,
391

47r 720

571
a2(s) = n2(1) —=

2
lns,

(4~)'45

(3)

cl3 (s) 03( 1 ) +
2

lns + small terms,
583

47r) 144

(5)

where the o, , (1) are constants of integration. The
coefficients of lns are determined by the numbers
of fields present in the theory. The above values

apply to the first paper in Ref. 7. Solutions of the
same form, which are based on the one-loop ap-
proximation, are also valid for the Georgi-Glashow
model provided that the coupling constants which
are not asymptotically free do not grow too large at
large s. In the case of the Georgi-Glashow theory,
the numerators 391, 571, and 583 of the fractions
multiplying lns become 797, 542, and 525 for Eqs.
(3)—(5), respectively. In nonconformally flat
space-time the contribution of the running coeffi-
cients o.;(s) to the effective Einstein equations is

larger than the contribution of the trace anomaly'
by a factor of lns [if we set u, (1)= 0]. Because the
curvature during the GUT era is considerably larger
than the mean curvature today, this contribution to
the curvature-squared terms in the Einstein equa-
tions would be expected to be at least an order of
magnitude larger than that of the trace anomaly.
The effects of these terms will be of cosmological
significance, and can be studied by established
methods. '

In the high-curvature limit, we find that the ef-
fective gravitational Lagrangian takes the form
L,„„=AC ~~~C

& &+BG, where C p ~ is the Weyl
curvature tensor, and 6 is the integrand of the
Euler characteristic. A and B depend on the
number of fields and are proportioned to lns. Re-
gardless of the particle content of the GUT, A is
negative and B is positive. This form of the
Lagrangian leads to field equations with interesting
conformal properties at high curvature. In confor-
mally flat space-times, the coefficients of the quad-
ratic curvature terms in the field equations ap-
proach constant values. (For a more complete dis-
cussion, see Ref. 1.)

The renormalization-group function which gov-
erns the effective behavior of K depends upon (&
and (H. If we use solutions for ((s) of the form
given in Eqs. (2), then the result for the running
Newtonian constant G (s) is given by

[16rrG(s)] '=Kp&(1) [1+3(2m) 'go lns]"06+const, (6)

where p, &(l) and go are the values of the Higgs mass and gauge coupling constant at a given renormalization
point p, =

JLt, o We have taken three generations of fermions. The constant E is

E = 1.90r] —0.37r2, (7)

where r
&

and rq were defined in Eq. (2).
The effective cosmological constant A, (s) is given by

[87rG(s)] 'A, (s) =0.35go p&(l) {[1+3(2vr) go lns] ' —I]+const, (8)

where G(s) appears in Eq. (6).
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The constants of integration appearing in Eqs. (6)
and (8) may be determined in terms of the present
values of the Newtonian and cosmological con-
stants, although this would require a more detailed
analysis, taking account of symmetry breaking. If
we ignore these details in order to obtain crude esti-
mates of the behavior of G (s) and A, (s), and as-
sume ~EC ~

—1, p&(1) —10"GeV, and ga —1, then
because the constant of integration in Eq. (6) is ex-
tremely large, G(s) is essentially unchanged from
today's value through the GUT era. On the other
hand, the constant in Eq. (8) will be very small or
zero because of the present value of A„so that at
the GUT time, A, (s) is at least of order
mp p&(1) where mp is the Planck mass. (The
presence of the lns term could increase this esti-
mate by several orders of magnitude. ) This contri-
bution is of the same order and sign as that ob-
tained from the vacuum energy in the inflationary
scenario. 9

In GUT models which are not asymptotically free
(such as the Georgi-Glashow model6), if, as is usu-
ally assumed, the coupling constants remain small
at the GUT time, then the above order-of-
magnitude estimates for A, (s) and G (s) would
also be valid. For G (s) this is because the constant
appearing in Eq. (6) will still be of order mp2 and
dominate the first term which remains of order
p&~ (1). Because G (s) remains essentially constant,
A, (s) in these theories will still be of order
mp 'p, 44, (1).

We have considered how renormalization-group
effects may be of importance for grand unified
theories in the early universe. We were particularly
interested in the behavior of the coupling constants
occurring in L,„,„given in Eq. (1). Further investi-
gation, including the effects of symmetry breaking,
is underway.
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