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Kinetic Growth Walk: A New Model for Linear Polymers
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To describe the irreversible growth of linear polymers, we introduce a new type of correlat-
ed walk, related to the zero —initiator-concentration limit of the kinetic gelation model. Our
model simulates real polymer growth by permitting the walker to form the next bond from
the unsaturated monomers at the neighboring sites of its present location. A heuristic kinetic
argument of the Flory type suggests a fractal dimension df ——(d+1)/2, in agreement with
our Monte Carlo and series expansion results (including a logarithmic correction at the upper
criticai dimension d, = 3).
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How to describe the configuration of a long poly-
mer chain has been the focus of attention for some
time. The classic self-repelling chain or "self-
avoiding walk" (SAW) has for decades been used
to model the equilibrium statistics of linear polymers
in dilute solutions; in this model, one enumerates
all possible configurations of an ¹tepwalk subject
to the constraint that the walk will not intersect it-
self. The numerical predictions differ considerably
from those of the Gaussian chain (or random walk)
which is permitted to intersect itself freely.

Recently considerable attention has been focused
on the question of how statistical laws are changed
when one considers kinetic or "growth" phenome-
na. For example, kinetic gelation has been seen to
belong to a different universality class than percola-
tion or equilibrium gelation. Similarly, the

Witten-Sander model of diffusion-limited aggrega-
tion has a different fractal dimension than other
equilibrium models of polyfunctional condensation.
Also, the cluster-cluster dynamic aggregation model
of polyfunctional condensation differs from static
models. '4

Thus far there is no kinetic model for linear poly-
mers. Amit, Parisi, and Peliti recently proposed a
clever variation of the SAW in which the walk can
grow; it can intersect itself, but tries to avoid doing
so by being attracted to "less visited" regions. 5

This model they call the true self-avoiding walk
(TSAW). Since the TSAW is a true kinetic model,
one might be tempted to suppose that it describes
the essential physics of growing polymer chains. In
this paper we propose a somewhat different growth
model, which we argue is more appropriate for this
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purpose.
To explain our kinetic growth walk (KGW)

model, we refer to Fig. 1. In an SAW one random-
ly chooses the next step from among the nearest-
neighbor sites (excluding the previous one); if it
happens that one chooses an already visited site, the
walk stops. In the KGW one instead randomly
chooses the next step among the nearest-neighbor
unvisited sites and stops growing only when none are
available. Therefore the KGW is much less sensi-
tive to attrition than the SAW as the walker will al-
ways escape whenever an avenue exists; on the oth-
er hand, it is not as free as the TSAW since the
walker may be trapped when all its surrounding
neighbors have already been visited. The justifica-
tion for such a model is that polymer growth is only
possible through the movement of a single initiator
to any of the nearest-neighbor sites with unsaturated
bifunctional monomers.

We now describe a self-consistent Flory-type
theory for the generalized KGW that builds on that
for the TSAW and SAW. The basic idea is that the
walker is described as a Brownian particle in a
viscous fluid under the influence of a radial force
which causes an effective radial drift velocity,

aR/ON —N"-'.

This can be clearly seen on the honeycomb lattice
where at least three particles are needed for trap-
ping. Since p=N/R,

+1—(v+1)~
1

while for (2)

~k —[(k —1)d+1]v
k

(3a)

(3b)

Note that Fk & I' 1, so that the TSAW force dom-
inates only if there are no interactions; in this case,
we may equate (1) and (3a) and recover the
Pietronero result6

v=df '=2/(d+2). (4a)

(k ~2). (4b)

For k = 2 this reduces to the Flory result for SAW,

v=3/(d+2), (sa)

while for k = 3 we have the KGW result (Table I)

If there are interactions, then the interaction with
the lowest power of k dominates and we find on
equating (1) and (3b)

v = df ' = (k+ I)/[(k —I)d + 21

v = 2/(d+ 1). (sb)
In the steady-state regime, this velocity scales with
N in the same fashion as the effective radial force
F=F, +F„. Here Ft —"rip/BR (p=N/R ) is the
force present in the TSAW arising from the prefer-
ence of the walk to avoid previously visited sites;
F„—tlUk/rlR arises from the possibility of trapping
where Uk —~id r p". In the SAW a minimum of
two occupied sites are needed for the possibility of
trapping, so that k = 2. For the KGW we make the
reasonable assumption k = 3, suggesting that the
dominant contribution comes from the three-body
interaction,

Above a critical dimension d, the Gaussian proba-
bility distribution dominates the asymptotic form of
the walk with a radial velocity given by AR/AN—N ti2 (i.e., v= —,

' above d, ); equating (4b) to —,,

we find

d, = 2k/(k —1).

The critical dimension (6) for the generalized KGW
with dominant k-body repulsive interactions is the
same as for the Ising model at a critical point of or-
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TABLE I. Fractal dimension df in Flory-type theory
for various values of system dimension d. Shown are the
SAW (d, =4), the KGW (d, =3), and the TSAW
(d, =2). Note that for all d, df for the KGW is inter-
mediate between df for the SAW and TSAW. For d = d„
all three models have df = 2, with a log correction of the
form (Rg') —N(lnN) with n=

~ (SAW) (Ref. 12), 0.2
(KGW), and 0.4 (TSAW) (Ref. 5).

(b)
FIG. 1. Two identical configurations are shown, with

appropriate weights at each step, for (a) an SAW and (b)
a KGW. The starting point is denoted by the filled circle.

1258

SAW
KG%
TSAW

1

1

3/2

4/3
3/2

2

5/3
2



VOLUME 52, NUMBER 15 PHYSICAL REVIEW LETTERS 9 APRIL 1984

der k. Thus, in particular, d, =4 for an SAW and
an ordinary critical point, d, = 3 for a KGW and a
tricritical point, and d, =2 for the k =~ limit and
for a critical point of infinite order. The detailed
mapping between the KGW critical point and a tri-
critical point will be developed in a longer paper. '

We have performed extensive Monte Carlo simu-
lations on several two- and three-dimensional lat-
tices, calculating the radius of gyration (Rg2) and
end-to-end distance (second and fourth moments
(r ) and (r") ). On the honeycomb lattice, 2x106
walks were simulated, of maximum length 350
steps, but only 1700 survived without being
trapped. For the square lattice, 2x10 walks were
started, of which 2700 survived to 350 steps. On
the triangular lattice, 2x10 walks were started and
3400 survived up to 350 steps. In Fig. 2(a) we
show double logarithmic plots of (Ag) vs N for
walks on all three two-dimensional lattices. We
note that the curves are parallel, and from the
slopes we estimate df =1.48+ 0.02; (r2) and (r4)
give equivalent results. "

We have also calculated (r ) for the square lat-
tice by exactly enumerating all possible walks of up
to 22 steps. Employing standard ratio methods of
analysis we estimate df ——1.47+ 0.03, which is con-
sistent with the Monte Carlo simulations. Thus
both the Monte Carlo simulations and series work
are consistent with the prediction df ———', for d = 2.

In three dimensions we were able to generate
much longer walks because of the low attrition rate.
On the simple cubic (sc) lattice 30000 walks were
studied, of which 2000 survived up to 10000 steps.
On the fcc lattice, 10000 walks were studied and
8000 survived up to 10000 steps. Figure 2(b)
shows double logarithmic plots of (Rg2) vs N for
both the sc and fcc lattices. The sc curve is parallel
to the fcc curve, and both are quite linear over
three decades. The inverse slope would correspond
to df ——1.93 +0.02, except that if d, = 3, as suggest-
ed by Eq. (6), we expect the data to be fitted by the
functional form (Rg2) —N (lnN ) . We find u
= 0.2 (Fig. 3), and so the data support the predic-
tion df = 2 with a logarithmic correction.

We observe that the KGW describes a growing
polymer before it has relaxed into the self-repelling
chain configuration. Such behavior may be ob-
served in dilute polymer solutions where the relaxa-
tion time far exceeds the characteristic time to grow
a sufficiently large molecule. Another physical sys-
tem where such behavior may be relevant is a single
polymer chain whose end points are attached to
tetrafunctional units in a gel. Indeed, our model
may be regarded as the zero-concentration limit of
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FIG. 2. Log-log plot of (Rg2) vs N for (a) two-
dimensional lattices (triangles, triangular lattice;
squares, square; and crosses, honeycomb; for compar-
ison with TSAW, the dashed line has a slope 2v = ~) and

(b) three-dimensional lattices (open circles, sc, and filled
circles, fcc; for comparison with SAW, the dashed line
has a slope 2v = ~.)

kinetic gelation of bifunctional monomers, ' since in
this limit a single "initiator" molecule is allowed to
perform a random walk on a lattice subject only to
the constraint that it not intersect itself.

We also note that our Flory-type theory for the
KGW is identical to the Flory theory for the 0
point. ' Indeed, it can be shown' that a polymer
chain at the 8 point and a KGW are in the same
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FIG. 3. Log-log plot of (Rg')/N vs lnN for sc (open
circles) and fcc (filled circles) lattices. The slope of the
line gives o. =0.2.

universality class.
In summary, we have introduced a new type of

walk which is more pertinent to the growth of poly-
mer chains. This walk has distinctive features with

unique critical properties. Our simple Flory-type
theory agrees to within (1-2)% with the numerical
data.
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