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Quantum Fluctuations and the Lorenz Strange Attractor
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The full quantum mechanical master equation for the laser is used to obtain the effect of
quantum fluctuations on the Lorenz strange attractor. For small quantum fluctuations the
strange attractor survives with a different topology. For larger quantum fluctuations the at-
tractor disappears and is replaced by limit cycles or fixed points, depending on the strength of
the fluctuations.

PACS numbers: 42.55.Bi

The Lorenz equations' developed for the
Rayleigh-Benard problem in fluid dynamics have
been shown to be isomorphic to the Maxwell-
Bloch equations for a single-mode laser in the
mean-field approximation. 3 It is then meaningful
to inquire about the role of quantum fluctuations
and the stability or otherwise of the strange attrac-
tor in their presence. Currently the impression is
sometimes given that fluctuations may be adequate-
ly incorporated by adding Langevin Gaussian
white-noise terms to the Lorenz equations. In a
general context such a philosophy has been criti-
cized by van Kampen4 as being erroneous. Specifi-
cally for the Lorenz equations such an approach
would only be correct if these were operator equa-
tions and the noise terms came multiplied by the
operators of the Lorenz equation. Such a procedure
is clearly far removed from that of adding simple
Gaussian white-noise terms to c-number equations.
%e shall use the quantum statistical theory of the
laser based on density matrices.

The master equation for a system of a dilute gas
of a large number W of two-level atoms in a
resonant cavity has the following form in the in-
teraction picture5

Bp/Bi = ( —(/0) [HI, p]+ AFp+ Ag p,

where

constant proportional to the dipole matrix element
of an atom, K, I', and y are relaxation rates, R;+-are
the pseudospin raising and lowering operators of
the ith atom at r;, k is the wave vector, and a is
the annihilation operator of the resonant mode of
the cavity. The commutation relations of the
operators are

[R;+,R) ] = 2R3;5i~,

[a,a't] =1,
(6)

On introducing a pump term in the standard way
and on taking expectation values of a, R, R3, and

e 'Rf a with the aid of Eq. (1), we find that the
equation of motion for (R ) has a linear term in

(aR3) and the corresponding equation for

(e ' 'JR~ a' t) has a term linear in (a aR3) and
also a term proportional to

X (Ri e 'R;+e ').
i

(&j)
As is usual in laser theories, a dilute gas of atoms is
assumed. This implies that the last correlation
function can be factorized. However, the system of

HI =ihg (a R —R+ a),
Arp=K([a, pa ]+ [ap, a ]),

(2)

A& p =X,. [(y+ I') ([R;,pR;+ ]+ [R; p, R;+ ]),
+r([R,+, pR, ]+ [R,+ p, R, ]))-, -
W +ik r;

i=1

(4)

Here p denotes the density matrix, g a coupling FIG. 1. Probability distribution of Xfor a=0.
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FIG. 2. Probability distribution of Xfor a=10 ". FIG. 3. Probability distribution of X for e = 10

equations is still not closed. %e now adopt the
semiquantum approximation used quite extensively
for the laser. " 8 In our problem this implies that

and

(aR3) = (a) (R3),

(a QR3~) = (a a) (R3~).

In this way phase correlations are preserved (i.e. ,
we do not decorrelate (a R ) for example). Man-
del has shown that such approximations are
better than the semiclassical approximation for the
laser (both above and below threshold) since spon-
taneous emission is included in this approximation.
An equation for (a"a) is then necessary to close
the set; the following equations are then found:

where

X~ (a),
Y~(R ),
r —Zo: R3,

U~(a R ) —(a )(R ),
V~ (a a) —(a ) (a).

Here 2e is g /K(y+21 )(r —I) and R is [g N/
&(y+ 21 ) + rj. The constants r, a. , and b have the
same meanings as in the standard Lorenz model.

It is difficult, as in the usual Lorenz system, to
obtain much information about the system of Eqs.
(8)—(12) analytically. However, it is easy to find
the fixed points of the flow. These are

X=a.( Y —X),
Y= rX —ZX —Y,

Z = XY—bZ+ b(r —I) U,

U = V(r —Z) —(a'+ 1) U+4a'e(R —Z), (11)

X = + (1 —2e)' [b(r —I) j'~',

Y= + (I-2~)"'[b(r - I) ~"'

Z=r —1,

U= V=2@.

(14)

(15)

(16)

V=2a (U —V), (12) For sma11 e these are very near the nontrivial

FIG. 4. Phase space plot of Zvs Xfor a=10 FIG. 5. Phase space plot of Yvs Xfor ~=10
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FIG. 6. Phase space plot of Uvs Z for e = 10

FIG. 7. Phase space plot of Vvs Ufor ~ = 10

fixed points of the Lorenz model (on projection
onto the X Y, Z plane) and unlike the Lorenz sys-
tem there is no trivial fixed point (but it is only
above the lasing transition that the model is valid).
When we remember that g is proportional to V

where V is the active volume of the cavity, in the
thermodynamic limit e will decrease as I/N where
N is the number of atoms. For very small e it is
possible to repeat the analysis of the usual Lorenz
case and find that the threshold for the onset of
chaos is modified by O(e). In fact a stability
analysis can be given even when e is not infini-
tesimal. The evaluation of the eigenvalues of the
stability matrix involves finding the roots of a quin-
tic which is done numerically. For e = 0 and 10
there is a complex conjugate pair of eigenvalues
with positive real part in the chaotic region. For
e =10, however, all eigenvalues have negative
real parts when r =25 but for sufficiently large r
(e.g. , r =28) a complex-conjugate pair of eigen-
values attains a positive real part. For e = 10 and
larger all fixed points are stable for parameter
values which would correspond to chaos in the ordi-
nary Lorenz model. In summary we find that as the
ratio e/r increases chaos is suppressed.

Figures 1—7 show different two-dimensional cross
sections of typical modifications to the Lorenz at-
tractor due to quantum fluctuations. For e= 10
although the Z-X plot is similar to the plot in the
conventional Lorenz attractor, the U-V, U-Z, and
V-Z plots are topologically quite different and are

somewhat similar to corresponding plots for
e = 10 3. For the latter value of ~ the Z-Land Y-X

plots are to a fine resolution periodic but the V-U
and U-Z plots are quite aperiodic. The graphs for
the probability distributions of X reflec the struc-
ture of these attractors. On comparing the distribu-
tions for e=0 and a=10 we find that the central
and side peaks have much sharper cusps when there
are fluctuations. For e =10 3 the distribution is
quite different and confirms the presence of a
strong pseudoperiodic element in the dynamics.
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