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Mechanism for Charge Bunching of Bosons in High-Energy Collisions
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Induced transitions give rise to enhanced probabilities of finding a large number of pions
of the same charge. The exact charge distribution with induced emission fully taken into ac-
count is solved in a simple model ~ The enhancements are found to be large. These effects
are observable in high-energy heavy-ion collisions, and possibly are responsible for the
cosmic-ray Centauro-like events.

PACS numbers: 13.85.Hd, 13.85.Tp, 94.40.Rc

Unusual charge bunching of shower particles has
been observed in cosmic-ray experiments in the
form of the so-called Centauro and mini-Centauro
events. ' These are events with large charge multi-
plicities but very few accompanying neutral pions.
On the other hand, such events are not found in the
CERN pp collider. One possibility consistent with
these observations is that such events occur only
when complex nuclear targets and large numbers of
collisions are involved. This motivates us to con-
sider induced transition as a possible mechanism for
producing abnormal charge bunchings. Similar to
the laser mechanism, we will refer to this mecha-
nism for amplifying same-charge pions, kaons, and
in general bosons, as the PASER, KASER, and
BASER mechanisms, respectively.

According to the BASER mechanism, the proba-
bility of having several final-state bosons in the
same quantum state (charge, energy, momentum,
etc.) is enhanced compared to those not in the same
quantum state, on account of the Bose statistics.
Take for example heavy-ion collisions at a suitable
energy when N 5 resonances are produced approx-
imately at rest. Since each isolated 5 has —, proba-
bility of decaying into p+7r (channel A), and —,

probability decaying into n+7ro (channel B), the
probability of N isolated 60 decaying into a m 's

and b = N —a ~ 's is given by the binomial distri-
bution ( ~) ( —, )'( —, ) ~, which is very small for
unusual charge bunchings (N large and either a or b

small). But in reality these N b, o's are not isolated.
If the first 6 decays via channel A, the PASER
mechanism gives rise to an enhanced probability for
the subsequent 5 's to decay also via channel A,
thus fortifying the probability for same-charge
bunching to occur. We will calculate in the rest of
this paper this enhancement and will show that it
can be very large.

This PASER mechanism for 5 decay might ex-
plain unusual charge bunchings of Centauro-like

events if the primary cosmic-ray particle is a heavy
nucleus. If it is a proton, induced production of
charged pions and neutral p in the beam fragmenta-
tion region (where all pions typically have compar-
able energies of several hundreds of megaelectron-
volts in the rest frame of the beam particle) con-
ceivably can still produce the unusual charge
bunchings. In any case, the BASER mechanism for
abnormal charge bunchings exists, is important, and
should be looked for in high-energy heavy-ion col-
lision experiments.

The exact calculation of the amplification factor
of charge bunching is difficult on account of our
relative ignorance of the particle production
mechanism. Nevertheless, once we assume the ex-
istence of a given number of resonances, the ampli-
fication factor due to induced decay can be calculat-
ed, at least in the context of the simplified model
discussed below. It is important to emphasize in
this connection that our BASER "device" is a nu-
cleus. It is highly microscopic; thus fu11-fledged
quantum mechanics must be used. Moreover, be-
cause of the smallness of the BASER device,
momentum spread becomes important. Thus the
usual signature of laser light, that of momentum
bunching, will be diluted and is probably not as
good a signature for the BASER mechanism as
charge bunching.

We will devote the rest of this paper to a solvable

model describing the decay of N 6 's approximately
at rest. We assume the % resonances to be con-
fined to a rectangular volume V, with small, dis-
tinct, and discrete Fermi momenta q, (1 ~i ~ N).
Theoretically, the pion and the nucleon momenta
should lie in the continuum, but we adopt a
coarse-grain description of them in this model. We
approximate the continuum by those discrete states
that satisfy periodic boundary condition in the
volume. In calculating decay matrix elements, the
final-state wave functions are always multiplied by
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the 5 wave functions, which vanish outside the volume. So effectively we are staying inside the volume
V where the different momentum states form an orthonormal complete set. The passage back to the contin-
uum is given by the familiar rule $-„(2m ) / V = Id k.

The effective interaction Hamiltonian governing the decay of Ao is3

H=g[(2m) / V]'~ X [(—, )'~ p+(13)m+(12) + ( —,
')'~ N+(13)m. o+(12)]h(1&)5-, -, -, +H.c.,

I ], I 2, I 3

where the particle symbols represent the corresponding field operators normalized in such a way that they
create normalized momentum states from the vacuum. An n-particle momentum state ~k) —= ~kt, . . . , k„)
is normalized to unity when all the momenta k s are different. The coupling constant g is related to the
width I of 6 by

I'=g [(27r)'/ V]x(27r)5[(k'+p, )' + (k'+m')' ' —M] =87r'g kk, k /M
k

(2)

where p„m, and M are respectively the mass of pion, nucleon, and 5; k, kt, k2 are the center-of-mass
momentum and energies of the decay products.

Suppose a of the N resonances decay via channel A and b=N —a decay via channel B. Let b, ,
" (b, s)

denote a resonance with Fermi momentum q; (q, +J) decaying via channel A (B). The corresponding nu-
cleon momentum' will be denoted by p; (p,'). The initial state is then ~A" A~) =—~A",

5,";Et, . . . , Ab ), and the final state is (k, k';p, p'~. Note that the a (b) 7r 's (7ro's) with momenta k, (kj)
are identical particles so that the pion from the decay of 6," does not necessarily have momentum
k;, although the corresponding nucleon momentum is always labeled by p;. The lowest-order transition rate
is given by Nth-order perturbation theory to be

(k k 'p p IH[(AE+ I &) 0] ~& '4 ) ~ 27r5(Ef E)~
k, k

P~ P

(3)

where AEis the energy denominator operator. The combinatorial factor in front of the sum accounts for the
possibility that a 6's with any Fermi momenta may decay via channel A, and not just those occupying the
first a Fermi momenta. The (a!b!) ' factor after the sum comes about because the pions are treated as
identical particles.

Inserting into (2) intermediate states, and after carrying out a somewhat involved combinatorial calcula-
tion, 4 we arrive at the result

q5r (E;—M) b q5r (Ej —M)
X IIX 5 (p) 5k k (~)IIX 5 (p) k' k' t')' (4)

where

N!
~ ~

Moreover, E;—= (k; + p, )'~ + (kP + m )'~, EJ = (k~' + p, )' + (kj' + m )', and sums are taken over all
permutations vr and 7r' of a and b objects, respectively. The constant q and the spreadout 5 function 5„are
given by

4g (2m)
2

3M I
I R kkik

5„(x)= (7)x'+r' 4

Equation (2) has been used in (6) and R3= (3/4n ) V has been introduced. The Fermi momenta g; have
been assumed to be small compared to m. Moreover, a narrow width approximation 5(x) = 5r(x) has been
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of hadronic. matter. We have also overestimated
the rates by using the narrow width approximation
and by ignoring the Pauli blocking effects of the nu-
cleons. It is thus wise to treat ( as a free parameter.
The charge distributions with and without the am-
plification factor A are shown in Fig. 1. We see that
o. can be very large; charge distribution can differ
substantially from the naive binomial distribution in
(5). In short, the PASER mechanism is important
and it greatly facilitates the occurrence of unusual
charge-bunching events. Finally, similar treatments
can be applied to calculate the induced decay of oth-
er resonances and the induced production of bo-
sons.
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