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A new connection between autocorrelation and cross correlation functions of the in-
tensities of signal and idler in parametric oscillators is derived, with the same origin
and generality as the Manley-Howe relations and with interesting experimental implica-
tions in the quantum domain.
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Parametric oscillators are extremely useful
tools with broad applications in many branches
of physics and technology. ' Their basic princi-
ple, the simul. taneous excitation of several coup-
led modes of different frequencies by a periodic
variation of their coupling parameter at the sum
frequency, has been real. ized in all frequency do-
mains up to the optical. domain.

Because of their common underlying principle
aI.l parametric oscillators share certain funda-
mental properties. One property of particular
generality is the relation discovered by Manley
and Rowe. 2 It states that in the steady state the
power extracted from or dissipated in any of the
simultaneously excited modes is proportional to
their respective frequency, i.e., if P,. is the pow-
er of the mode with frequency ~,. then in the steady
state

P~ P2 P„
(d2 N„

In this Letter I wish to prove another fundamen-
tal relation which holds with the same generality
as Eq. (1) and which has, in fact, a common ori-
gin. It is a relation between the intensity cross-
correlation function and the intensity autocorre-
lation functions of any pair of the simultaneously
excited modes (cal.led signal and idler, in the
following). Since this rel. ation is of particular in-
terest in the optical domain I will present a quan-
tum statistical derivation, which al, so proves (1)
in the quantum domain. Despite its great gener-
ality the relation that is proven here seems to
have escaped notice, so far. A special case had
been obtained earlier from an approximate analy-
sis of a special model, but its general signifi-
cance was noi recognized. The same special case
of the relation is also implicit in the results of a
recent paper in which a somewhat similar analy-
sis was presented, but the relation went unnoticed
there.

The derivation will be based on an interaction

Hamil. tonian of the general form'

H~,

~=iong(blab,

~b~~ ~ ~ b„~ —H.c.),
where g is the coupling constant, b,. and b,.~ are
the annihilation and creation operators of the
mode with frequency v, , and b~ and b~~ are the
corresponding operators of the mode at the pump
frequency co~. I assume at least approximate
resonance,

(2)

lh&ul= ~~- Q&u,. «~, , 0 =1,2, . . n, .

so that nonresonant interaction terms are negl. i-
gible. In addition to the interaction Hamil. tonian
there is a free-field Hamiltonian II~ of the usual.
form. The arbitrary externa1. excitation of the
pump mode is represented by an explicitly time-
dependent Hamil. tonian involving b~, b~~ onl.y, and
other operators describing the pumping light
source, which are not written out explicitly:

Hq=H~(bp, b~~, t). (3)

For arbitrary statistical excitation of the pump,
H~(t) is an arbitrary stochastic (operator-valued)
process in time. For multimode excitation, Eqs.
(2) and (3) are to be summed over p.

The extraction of power from all modes is rep-
resented by their coupl. ing to heat baths in a
standard way. ' For simplicity. of presentation I
neglect here finite-temperature effects in these
heat baths (which is permitted at optical. frequen-
cies, but not at much lower frequencies), but the
relation can easily be generalized to include such
effects.

The quantum statistical description of a para-
metric oscillator is then provided by a master
equation for its density operator p, which takes
the form'

8 p/et =(i/h )[p, H)+ppL, p+Q, I,p, .

where H = H~+Q~(H t P+ H~ ) and L~ and L,. de-
scribe dissipation in all modes and are of the
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b, „=b,.tb,. -b,.tb, ; [H, b, „]=0. (8)

Because of the symmetry between all excited
modes it is sufficient to consider 6» in the fol-
l.owing.

If an oscillator is pumped from the vacuum
state of signal and idler and losses in these modes
are negligible, the state space is given by the
subspace with 6„=0 and the intensities of signal.
and idler are maximally correlated at all times:

LKI = «k([bop, bx']+[bx». ']» ~=2 &.

In the following, I only use one basic property of
H, namel. y the existence of the conserved quanti-
ties

the Hamiltonian with respect to signal and idler
and if we put all correlation functions into the
normally ordered form which is measured in
photocount experiments. ' Equation (8) is the loss-
less special case of the general relation which I
want to establish here. The intensity cross-cor-
relation function, according to Eq. (8), takes the
maximum value which is permitted by a general
Schwartz inequality. 4

For an oscillator with finite losses the differ-
ence b,» is no longer conserved. However, gen-
eral relations of the kind (7), (8) may still be
established in the steady state, where the aver-
ages Trpb» and Trp(b»)2 become time independ-
ent. Using the master equation (4), (5) with [H,
6»] = 0, we obtain from Trpb, » = 0 the simple re-
lation

(b, t b, ) =(b, 'b, ),
(b, 'b, tb, b, ) ={b, 'b, tb, b, )+(b, 'b, ) .

(7)

(8) «, (b, b, ) = «2 (b2 tb2) .

Equation (7) is the lossless version of (1) and fol-
lows from b„=0. Equation (8) follows from b„'
=0 if use is made of the complete symmetry of

Since the total power P& extracted from mode i
is given by P, =2«,. h111, (b, tb,.) Eq. . (9) proves Eq.
(1). In the same way we obtain from Trpb»'=0
with [B, b»2] =0 and some simple rearrangements,

(b, tb2 tb2b, ) = (b tb tb b )+ ~ (b 2bt2b tb2)2' (b, tb, ).
1 2 1 2

(10)

It is clear that identities for higher-order corre-
lation functions could be similarly derived with

[a, (b„)"]=0.
I note that Eqs. (9) and (10) can only be estab-

lished for the steady state and are therefore sim-
ilar in type but fundamentally different from Eqs.
(7) and (8) which apply to the lossless time-de-
pendent state. In fact, neither Eq. (7) nor (8) is
obtained from Eqs. (9) and (10) in the singular
limit ~, -0, ~, -0, since the generally time-de-
pendent state without any losses is not the limit
of a steady state with small losses.

However, if no internal losses occur in the pa-
rametric system, the «, in Eq. (10) can be iden-
tified with the rate constant of radiation from
mode i and Eq. (10) may be rewritten as a rela-
tion between photocount rates

Z,. =21',. «, (b, 'b,.), .

A„=21',. g,. («,. + «,.)(b,. tb,. tb, b,.).
Here g,- is the quantum efficiency of the counter
for mode i, R,. is the average counting rate for
mode i, and A,.~ is the coincidence rate for si-
multaneous photocounts of mode i and mode j.
g, , is measured in mode i by using a beam split-
ter and two identical counters. Equation (10) then

~states

~12 2 I( l2~ ll)~ll ( /1 ~ I2+22] + F2~1'

For ideal quantum efficiencies g,. =1, this rela-
tion just repeats Eq. (8) for counting rates If.
there are finite internal losses in the parametric
system, the «,. in Eq. (10) are different from and
larger than the rate constants appearing in the
definition of the counting rates g,-, P,-&.

While the fundamental significance of the Man-
ley-Rowe relations (1) for parametric processes
has long been appreciated, the equally general
relation (10) between the intensity crosS-correla-
tion function of signal and idler and their autocor-
relation functions seems to be new. For the case
of equal «, Eq. (10) reduces to

(b, tb2tb2b„) = (b, tb, tb, b, )+~(b, tb, ).

In this special ease, the relation has been ob-
tained in a previous paper' as the result of an
approximate analysis under much more special
assumptions; it is also implied by the results of
a more recent paper' obtained under very similar
special assumptions.

I now discuss the general quantum mechanical
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significance of the present result and present a
comparison with the available experimental work.
In the completely lossless case the joint quantum
state of signal and idler for 6„=0 is described
by a pure quantum state of the form ~1JI) =g„c(n,}
x ~n„n,), where ~n„n, ) is the number state with

n, and n, quanta in the signal and idler, respec-
tively. The measurement of the quantum number
in the idler mode determines the quantum number
in the signal mode completely and instantaneously.
This complete quantum correlation is expressed
by Eq. (8}. Quantum correlations of this type have
been first discussed by Einstein, Rosen, and
Podolsky' and the joint measurement of all the
correlation functions in Eq. (8}constitutes an ex-
periment of the type proposed by them. It would
allow one to distinguish experimentally between
quantum statistics and classical statistics in a
pure quantum state. While such experiments have
so far only been conceived in lossless conserva-
tive systems (mainly for correlations between
spins), the relation (10}suggests that we consid-
er a similar experiment for a quantum optical
system in a dissipative steady state. An experi-
ment of this kind would test an intrinsical quan-
tum mechanical property of a dissipative system
and would therefore be of fundamental importance.
The predictions of Eq. (10}for such an experi-
ment in the case of symmetrical losses are as
follows: (i} The intensity cross-correlation func-
tion in the steady state is reduced below its the-
oretical maximum given by Eq. (8}because of dis-
sipation, but (ii) it is still larger than the clas-
sically allowed maximum value' given by (b, tb, t
x b,b, ) = (b, tb, tb, b,). In fact, the cross-correla-
tion function is predicted to lie halfway between
both cases. (iii) The correlation identity (10}and
the Manley-Howe relations (9}should hold com-
pletely independently from the way in which the
parametric oscillator is pumped; in particular,
an incoherent multimode pump may be used.

Measurements of the intensity cross correlation
between signal and idler in parametric fluores-
cence have been carried out. ' In that case modes
satisfying frequency matching ~~ = ~, + ~, and
wave-number matching A~ =k, +4, are pairwise
coupled by the Hamiltonian (2}, and the system
is driven far below the threshold of self-sustained
oscillation. In that region the field statistics of
signal and idler is known to be Gaussian and their
phases are random' but with strong correlations
between signal and idler, which are completely
determined by Eq. (10}. Using the Gaussian sta-
tistics on the right-hand side of Eq. (10}, we ob-

tain with Eq. (9)

(b, tb, tb, b, )

=2(b, tb, ) (b, tb, )
1 2

l(b, b,)l' = (b, tb, ) (b, tb, )+ (b, tb, ). (13}

It is obtained in the completely lossless case
from Eq. (8}. In parametric fluorescence, the
average quantum number in signal and idler is
much smaller than 1 (it can be estimated to be of
the order of 10 ' in the experiments of Hef. 9)
and the first term on the right-hand side of Eq.
(11}is completely negligible. The experiment
therefore operates in the extreme quantum limit
of Eq. (10}, where the second term dominates the
classical first term. Under the assumption that
the internal losses in the experiment are negligi-
ble, Eq. (11}may be rewritten for counting rates
and then reads 8»= g,A, . This relation was found
to be satisfied in Ref. 9 within the estimated ex-
perimental errors. To within these uncertainties,
the experiment of Ref. 9 therefore establishes
nonclassical correlations for signal and idler in
parametric fluorescence, very far above the clas-
sically permitted maximum value, given by the
first term of Eq. (10}. Close to the classical lim-
it the first term on the right-hand side of Eq. (11}
or Eq. (10}is dominant. The transition between
the quantum regime and the classical regime is
described by the full relation (10). It could be
checked in an experiment similar to that of Ref.
9 if a parametric oscillator is observed in a
sequence of states from below threshold to high
above threshold.

In summary, I have derived the general rela-
tion (10}between the autocorrelation functions
and the cross-correlation function of the intensi-
ties of signal and idler in the steady state of a
parametric oscillator. As was made clear by its
derivation this relation applies regardless of the
details of the pumping process.

It reflects the strong correlations of signal and
idler due to their joint generation by a single

Using the Gaussian statistics also on the left-hand
side of Eq. (10}and noting that (b, tb, ) vanishes
in the steady state because of the randomness of
the phase difference between signal and idler, we
obtain

~(b, b,)~'= (b, tb, ) (b, tb, )+ ' (b, tb, ). (12)
Ki+ g

The maximum quantum correlation allowed by
the Schwartz inequality is given by
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quantum process. In the case without any losses,
these correlations are so strong that the meas-
urement of the quantum number of mode 1 de-
termines the quantum number of mode 2 com-
pletely and instantaneously, providing an example
of the Einstein-Podolsky-Hosen experiment. I
have shown that a corresponding result holds for
steady-state photon counting rates, if there are
no internal losses in the parametric system be-
yond those due to the escape of the photons. If
there are additional internal losses, relation (10)
is still applicable and describes a cross correla-
tion whose strength is reduced by dissipation. I
therefore obtain the possibility for an experiment
of the Einstein-Podolsky-Rosen type in a dissipa-
tive steady state. I have discussed explicitly the
application of the results to experiments on pa-
rametric fluorescence in the steady state.

As a final remark it may be worthwhile to point
out that the whole discussion applies without
change also to photon correlations in nondegen-
erate two-photon lasers, which have recently

been realized. "
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