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We construct arbitrary matrix elements of the quantum evolution operator for a wide class
of self-adjoint canonical Hamiltonians, including those which are polynomial in the Heisen-
berg operators, as the limit of well defined path integrals involving Wiener measure on phase
space, as the diffusion constant diverges. A related construction achieves a similar result for
an arbitrary spin Hamiltonian.
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Path integrals for evolution operators of quantum
mechanical systems are almost always defined as
the limits of expressions involving finitely many in-
tegrals. ' Efforts to define them as integrals involv-
ing genuine measures on path spaces of continuous
paths, or as limits of such integrals, have been
largely unrewarding. 2 In our earlier work on this
subject we have succeeded in establishing quantum
mechanical path integrals with genuine measures
for the limited class of quadratic Hamiltonians.

In this paper, taking an alternative but closely re-
lated approach, we succeed in constructing arbitrary
matrix elements of the quantum evolution operator
as limits of well defined path integrals involving
Wiener measure on phase space as the diffusion
constant diverges. Our construction works for any
self-adjoint Hamiltonian of a wide but special class
(defined below) which includes all Hamiltonians
polynomial in the canonical (Heisenberg) operators.
A similar construction leads to an analogous
description of arbitrary matrix elements of the
quantum evolution operator for an arbitrary Hamil-
tonian composed of spin operators for any fixed
spin s ) 0, extending earlier work. As above,
these matrix elements are defined as limits of well
defined path integrals involving Wiener measure

defined here on the unit sphere, again as the dif-
fusion constant diverges. Finally we comment on
how the spin path-integral expression passes to the
canonical one as s ~. We content ourselves
here with a statement of our principal results,
reserving a precise formulation and detailed proofs
to a separate article. For clarity we confine our dis-
cussion to a single degree of freedom. The notation
is that of our earlier papers.

Canonical case For all.—(p, q) E R2 let

~p, q) —= exp[i(pQ —qP)](0), [Q,P]=i,
denote the canonical coherent states, where i0) is a
normalized vector that satisfies (Q+iP) ~0) =0. It
follows that a general operator H can be expressed
as

H =
JIh (p, q) ~p, q) (p, q ~ dp dq/27r,

where

h (pq) = exp[ —(i) /Bp + r)'/r)q )/2] (p qlH~pq).
For H the unit operator I, this expression yields
h = 1; for H a polynomial in P and Q, it follows that
h is a polynomial in p and q. The special class of
Hamiltonians we are able to discuss includes all
those for which h (p, q) is polynomially bounded.
We suppose hereafter that H denotes the self-
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adjoint Hamiltonian of interest, and thus that h is
real.

Now we introduce additional canonical coherent
states

Ip, q, n) —= exp[i(po —qP)]In), n =0, 1, 2, . . . ,

where In) denotes the normalized nth excited state

of a harmonic oscillator of unit frequency; clearly

Ip, q, 0) —= Ip, q). For any (8 with lpl (1 it follows
that

lp, q)) —= X P""lp.q.n)
n-0

defines a vector in an associated direct-sum Hilbert
space 4 . We define four operators in P'as follows:

Ep= J Ipq)) ((pqldp dq/27r= X IPI"I„, A —= X 8 nl„, Bp= Jth(pq)lpq)) ((pq I dpdq/27r,
n-0 n-0

Cp= Jtexp[ —i eh (p, q)] lp, q) ) ((p, q I dp dq/2vr.

In arriving at the second form for Ep we have used the basic fact that

&
I p q n ) (p q m I dp dq/2m = (m I n ) I„=o „I„,

where In denotes the unit operator in the nth direct-sum subspace. Observe that E] is the identity operator
in 4, while P = Eo is the projection onto the 0th subspace P. A real h implies that Bp is a symmetric opera-
tor in A.

Now choose the following parameters: N is a variable positive integer, T a fixed positive time interval,
e = T/(N+1), and (8= (1 —ev/2)/(1+ ev/2), v fixed and positive (v is the diffusion constant, as will be-
come apparent). With these identifications, and for polynomially bounded h, we are able to prove5 s ("s"
means strong) Lemma I:

s-limCg =exp( —v TA —i TBl).
Q~ oo

Furthermore, under the same conditions, we can prove Lemma 2:
s-lim exp ( —v TA —i TB l ) = P exp ( —i TPB lP)P.
p~ oo

(2)

Observe that PBiP restricted to the 0th subspace is just the self-adjoint Hamiltonian H. Consequently, for
any lqt&), lp) E 4, the matrix element of the evolution operator is given by

((t& le
'TH

I(c() = lim llm (((t& ICg l(ts) ), (3)

where Iqt&) ), I(ci) ) CA are vectors with 0th entry l(t&), I(C(), respectively, and zero in all remaining entries,
n)0.

We now proceed to give a path-integral expression for (3). With the parameters chosen as above it follows
that

((p q Icq Ip, q"',»"=I J(IIl((ui+s qs+sIlui qi» fI{expf —saq (p, , q, &&dp, dqi/2'),
I 0 I 1

where (p', q') = (po, qo) and (p",q") = (p~+ l, q~+ l). We observe that3"

& &P2.q2lpl. ql) ) = 1+ev/2 i 1
exP' (Plq2 qlP2) — [(P2 Pl) + (q2 'ql) ] '

6V 2 26v
s

The form of this expression makes evident the result of the limit N ~ (e 0) as
T

lim ((p",q" ICtl Ip', q') ) =2me" i Jtexp[i Jt [—,(pq —qp) —h(pq)]dt]dp(v(pq),

where p, ~ is a product of two pinned Wiener measures concentrated on continuous paths with a normalized
connected covariance given for tl ~ t2 by (x(tl)x(t2))'= vtl(1 —t2/T) for x =p or q; here the role of v as
diffusion constant is apparent. Note that f(pq —qp)dt interpreted as f(p dq —q dp) involves well-defined
stochastic integrals in any9 (Ito or Stratonovich) sense. Finally, we obtain the following Theorem:

s

dp" dq" dp' dq'
(@Ie 'THI(id) = lim Jt(QIP",q") [2me' t

J exp(iS)d p, &v](p', q'I(id)
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where Sdenotes the "classical action, "
fOT

[—, (pq —qp) —h (p, q) )dt.

This result achieves our stated goal of a path-integral representation.
It is important to compare our results here with those obtained earlier. In Ref. 3 we were able to find an

expression for quadratic Hamiltonians which involves the function H(p, q) = (p, q lHlp, q) as the Hamiltoni-
an function in S (rather than h), at the expense of introducing Wiener measures with nonvanishing drift
terms determined by the usual Hamilton equations of motion. Thus, at least for the limited set of Hamil-
tonians in common, we gain a clearer understanding of the true underlying distinction between two formal
but otherwise identical path-integral expressions given by'

M)texp(iS) II,dp (t) dq (t),
where S =f[—, (pq —qp) —h (p, q)]dt or S = f [—,

'
(pq —qp) —H(p, q)]dt. If it 0 recall that h (p, q)

H, (p, q), H(p, q) H, (p, q), where H, (p, q) denotes the usual classical Hamiltonian. This fact explains
how yet another expression, involving Wiener measures without drift and the function H(p, q) representing
the Hamiltonian, can be valid insofar as the leading term of the stationary-phase approximation is concerned,
since in that approximation both H and h are equivalent to H, [neglecting terms 0 (ir ) ]."

The rigorous path-integral definition described in this paper enables variable transformations (e.g. , canoni-
cal transformations) to be examined much more critically than in the usual formal formulation. Such a pos-
sibility provides just one motivation for our seeking to define quantum mechanical path integrals in terms of
genuine measures on continuous paths.

Spin case.—With regard to a path integral for spin s we can proceed analogously. Fix s ) 0, and for
(e, y) e S'let

le, 4) —= exp( —i QS3) exp( —i eS2) ls, ) E 4,
denote normalized spin-coherent states, where S3ls, ) = s ls, ), and S = s (s + 1)I,. It follows that

H =N,
Jfh (e, y) le, y) (e, @ld0,

where N, = (2s + 1)/4m, d 0 = sine de dp, represents any operator in A s Here the relation between h and
His expressed' in terms of the usual spherical harmonics YI~ by

h(e. $) = X X 2

'
1't (e, P) J"&( (e', P')(e', Q'lHle', P')dQ'.

Evidently for H the identity operator I„h = 1; while for any operator H, h is well defined. Hereafter we as-
sume that H is the self-adjoint spin-operator Hamiltonian of interest, and thus h is real. Next we introduce
additional normalized spin-coherent states

le, &j )
—= exp(i —@S3)exp( —i eS2) lj )

appropriate to spin jand magnetic quantum number m, where S3lj ) = m lj ); clearly le, qb, s, ) = le, $). For
any P with lPl ( 1 it follows that

le, y)) = $ g (2/+2s+1)' 2p' '+ '+' le @,i+s, )
I 0

defines a vector in an associated direct-sum Hilbert space 4, . Four operators are defined on M, as follows:

pE=„"I ey))(«, @l«& 4/~) = X Ipl""""'"I/„, & = X e —,'i(i+2s+1)I„„
I 0 I 0

&p= Jth(e, y)le, y))((e, yl(dn/4~), cp= Jf exp[ ieh(e, y)]le,—y))((e, yl(dn/4~)

Here we have used the fact that

(2/+I) j l8, 4j / (H. p j' l(dfl/4m) = B,IJ.

for all j, j ~ m. We choose Na variable positive integer, Ta fixed positive time integral, e= T/(N+ 1), and

P = 1 —~p, v fixed and positive. Then again we are able to prove, mutatis mutandis, (1) and (2), with (3) as a
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consequence. As for the path-integral expression it follows that

N
«e", p" Icrle', p'11=„f J(II«e, +,, &, +, le, &,,)1 fIexp& —iah&e, , g, )I&dB,/4m),

p 0 p 1

where, for 0 & e « 1, and up to 0 (e ) terms,

((8,, F2~8, , y, ) ) = X(21+2s+ I) [I ,—.v—i(I+2s+1)](8,, y2, I+s, lH, , y, , I+s, )
I 0

00 I
= (I+s ev)(82, $2~81, $1) x x (47r)[l —, e—vl(I+I)]Yt~(82,$2) Yt~(81, $1).

I-Om - —I

Note here that
'

2$
82 81 42 41, 82+ 81 . 42 &tel

(82, $2~81, $1) = cos cos +i cos sin
2

while

(4)

oo

(e'" )(82, &t2', 81, $1)= X X exp[ —, tvl(—t+1)]Yt~(82, $2) Yt~(81, &t'1),
I Om —I

with 5 the Laplacian on the unit sphere, is the Markov transition element for Brownian motion on the
sphere with diffusion constant I . Consequently,

fOT

lim ((8",$"~CPH', $')) =4me'"
J exp[i [s cosHQ —h (8, P)]dt]d p "tvH, Q). (6)
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Here p, ~ denotes a pinned Wiener measure on the unit sphere with diffusion constant v and weight given by
(5) for t = T. To obtain (6) it is necessary to expand (4) to second-order differentials and use an appropriate
form of the Ito calculus. Here fcos8$ dt = f cosH dg represents a well defined stochastic integral (in any
sense). Finally we observe that

(@le ""ly) = 11m jl (ylH", @")(&,e'"Ti2Jte"di ~) «', y'ly) d&" dfI',
T

with S = f [s cosH& —h (8, g) ]dt, represents the
desired path-integral expression.

In the spin case remarks entirely similar to those
of the canonical case apply to an alternative path-
integral definition in which Brownian motion on the
sphere in the presence of drift and alternative ex-
pressions for the classical Hamiltonians arise. See
Ref. 4."

Lastly we remark that if we rescale v in the spin
case to v/s, set p = s' cosH, q = s' $ ( —m. «t~ m), and formally take the limit s ~, then it
follows that the spin path integral becomes the
canonical path integral (modulo a trivial phase
change).
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