
VOLUME 52, NUMBER 13 PHYSICAL REVIEW LETTERS 26 MARCH 1984

Test of the Validity of the Classical Theory of Spinodal Decomposition
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Spinodal decomposition has been studied for a binary system with medium-range interac-
tions. The results indicate that the classical theory of Cahn and Hilliard, which predicts an
exponential growth of the structure factor for small wave vectors, holds for a certain range of
composition within the spinodal region for short times after a quench.

PACS numbers: 64,60.My, 05.20.-y, 05.70.Jk

Spinodal decomposition refers to a phase separa-
tion in an initially unstable system. An alloy or
binary mixture is quenched from the one-phase re-
gion into the miscibility gap and undergoes phase
separation into, say 2-rich and 8-rich domains. In
the classical theory of Cahn and Hilliard'2 this pro-
cess takes place by long-wavelength fluctuations,
i.e. , the structure factor increases exponentially for
wave vectors k smaller than a critical k, . Such a
behavior has not been observed in experiments'
and also not in Monte Carlo simulations of binary
systems with nearest-neighbor interaction. Howev-
er, recently experiments on polymer blends
showed an exponential increase in the scattering in-
tensity.

In this paper we investigate the process of phase

separation in a model binary system with medium-
range interaction. Such a system has nearly mean-
field-like behavior' and can be mapped onto the
polymer problem'0 where the chain length plays the
role of the interaction range.

The Cahn-Hilliard theory of spinodal decomposi-
tion rests on the assumption that a coarse-grained
free energy

~(.) =J,[-,'.(~.)'+f(.)]d. (I)
can be defined in the two-phase region with a
coarse-grained free energy density f(c). The coef-
ficient K is taken to be K = ka T,R, where R is the
interaction range. Since we will be concerned with
medium-range interactions8 9 " we subsequently
assume that f(c) is given by its mean-field approxi-
mation

f( c) = ka T [c ln c + (1 —c ) ln ( 1 —c) + 2 c ( I —c) T,/ T ) . (2)

To derive a prediction for the evolution of the structure factor, which is proportional to the small-angle dif-
fuse scattering intensity, ' after a fast quench into the miscibility gap, one starts from the diffusion equation

Bc(r)/dt =M'7 5F/5c+g(r, t) = MY ( —KV c+ df/rlc) +((r, t), (3)

with a random noise term ((r, t) included by Cook'3 to ensure the correct statistical description of the system
dynamics. Mis a mobility. Linearization of Eq. (3) leads to the prediction for the structure factor S(k, t)

S(k, t) = S(k, 0) exp[co(k) t]+ Sr(k) (I —exp[co(k) t]], (4)

with ST(k) being the Ornstein-Zernike'" equilibri-
um structure factor. The amplification factor cu(k)
in this theory is given by

o)(k) = —2MK2(Kk +(j f/(lc i,,).

For 82f/rlc2 & 0 (inside the spinodal region) there
exists a critical wave vector

such that the amplification factor is positive for
k ( k, . Hence the Cahn-Hilliard theory predicts
that iong-wavelength fluctuations will grow ex-
ponentially and that the maximum growth occurs at

k =k,/K2, i.e. , the peak of the structure factor
remains stationary.

The validity of the linearized Cahn-Hilliard
theory has been discussed by Binder. '0 He obtained
a Ginzburg criterion which gives a range of concen-
trations where the theory holds for short times after
the quench:

1 « R'(I —TIT, )' '(I —c/c, )' ' (7)

The subscript refers to the spinodai concentration
(6'f/rlc'=0)

The process of spinodal decomposition is studied
by Monte Carlo simulations of a model A-B sys-
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tern. With each lattice site of a simple cubic lattice
of W=L3 sites (L =60, with periodic boundary
conditions) is associated an occupation variable

7I (r;) which takes on the values +1 (occupation
with an A atom) or —1 (8 atom). The relative con-
centration of A atoms is c = (1+7I )/2, where
7l = N $,.7l(r;). In this model each lattice site in-

teracts with q neighbors (q =124) with equal in-
teraction strength J/ka T= —,(1/q). " This yields

an interaction range of 8 =1.42. To wash out the

fluctuations sufficiently, especially for the small
wave vectors, five runs were made for the wave
vectors k = (27r/L) n with n = 5, . . . , 9 and 19 runs
for n = 1, . . . , 4, which took roughly 190 h com-
puter time.

Initially the A and 8 atoms were distributed ran-
domly, corresponding to an infinite temperature
with a uniform composition. The system was then
quenched to the temperature T/T, = —, and evolved
via exchanges of nearest-neighbor atoms. '6

The structure factor was computed from the
Fourier transform of the pair-correlation function
and spherically averaged':
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FIG. 1. Evolution of the structure factor after the
quench into the miscibility gap of a binary system with
concentrations c =0.4, 0.35, and 0.24 plotted serniloga-
rithmically. The Cahn-Hilliard theory predicts an ex-
ponential growth.
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FIG. 2. Semilogarithmic plot of the structure factor
after the quench for the short-range model
(q =6,L =30). The data were taken from Marro (Ref.
17).

where n = 1, . . . , 9. g' denotes that for a given n a
spherical shell is taken as n ——, ~

~
k I L/2m

~n+ 2.
1

For the Ginzburg criterion (7) we expect the
linearized Cahn-Hilliard theory to hold for short
times after the quench for concentrations 0.35( c (0.65. The evolution of the structure factor
is shown in Fig. 1 for the first five wave vectors.
Initially the structure factor indeed increases ex-
ponentially and then changes to nonexponential
behavior. For the small k vectors the time where
exponential growth was observed was roughly five
Monte Carlo steps per atom (MCA) (c = 0.4) and
decreased to three MCA for the larger k vectors.
For the other two concentrations (c=0.35, 0.24)
the time decreased to two MCA for the small k vec-
tors to less than one MCA for the larger k vectors.
For comparison we have plotted the data of Marro'7
for the short-range model (q =6,L = 30) in Fig. 2.
It is evident that the structure factor does not in-
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FIG. 3. Amplification factor u&(k) of the structure fac-
tor divided by the square of the wave vector plotted vs
the square of the wave vector. The straight lines are the
mean-field predictions.

crease exponentially in the nearest-neighbor model.
Figure 3 shows the results for the amplification fac-
tor to(k) divided by k2 versus k2 for concentrations
c = 0.4, 0.35, and 0.24, which should give a straight
line. The data points were obtained from the loga-
rithmic time derivative of the structure factor, tak-
ing into account the equilibrium structure factor
Sr(k). For the concentration c=0.4 the data fol-
low the prediction of the Cahn-Hilliard theory. The
deviation of the second wave vector is due to
finite-size effects and the limited statistics. A
reduction of the error bars is, however, only possi-
ble with substantially more computer time. The
agreement gets worse for the other two concentra-
tions, as expected from (7).

To summarize, the Monte Carlo simulations of a
medium-range model indicate that Cahn's linear-
ized theory of spinodal decomposition holds to a
very good approximation for a short time after the
quench for a certain range of compositions given by
a Ginzburg criterion. ' It becomes exact, however,
only in the limit of infinite interaction range. In
this limit one can come arbitrarily close to the spi-
nodal singularity. 9 For medium-range interaction
the linear theory becomes worse as one approaches
the spinodal and ultimately breaks down. It

remains a challenge for future theories to go in a
systematic way beyond the linear approximation
and describe the transition region between classical
nucleation theory and classical spinodal decomposi-
tion. The present results anyway explain why in
systems such as polymer mixtures the concept of
the linear theory is much better defined than for
short-range systems.
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