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The l/R perturbation series for H2+ has a complex Borel sum whose imaginary part deter-
mines the asymptotics of the perturbed energy coefficients E' '. The full asymptotic expan-
sion for the energy includes complex, exponentially small terms:

E (R) gE (2R) + c
— /n g& ~+i(2R)—

+ e "[ gd'"'(2R) + logR terms] + ie "$c' '(2R) +. . . .

The explicit imaginary terms cancel the implicit imaginary part of the Borel sum. An exact
relation between the double-well gap series, exp( —R jn) $ a' t(2R), and the
i exp( —2R jn) series is derived.

PACS numbers: 31.15.+q, 03.65.-w, 31.10.+z

This paper concerns the expansion' of the ener-

gy levels of the hydrogen molecular ion H2+, in in-
verse powers of twice the internuclear distance, 2R.
A standard textbook example of Rayleigh-Schro-
dinger perturbation theory (RSPT), H2+ displays
not only all the subtle complications of the anhar-
monic oscillator, Zeeman effect, and LoSurdo-Stark
effect, but several surprising new ones.

The Hamiltonian for H2+ in atomic units is H
= ——,& —Ix~

' —~x —R ', where R is the in-

ternuclear distance. As R ~, the bound states
of H2+ converge to those of the hydrogen atom and
admit the RSPT 1/28 series as an asymptotic ex-
pansion to all orders. ' ' There are, however, the
following known complications:

(1) The perturbation series diverges.
(2) Since H2+ is a symmetric double well, its

bound states are asymptotically doubly degenerate
as R ~, the gap being O(exp( —R/n)). '

(3) All the terms in the ground-state perturbation
expansion after the first few have the same sign
(which may be general for double wells)3 '; thus
the Borel sum (if it exists) is complex, and its rela-
tion to the original problem needs clarification.

(4) An approximate formula relating the rate of
divergence of the RSPT series to the gap has been
discovered numerically by Brezin and Zinn-Justin"
(BZJ). The divergence rates for the anharmonic os-
cillator and the LoSurdo-Stark effect have been un-
derstood rigorously through the Borel summabili-
ty' ' of the perturbation theory and dispersion re-
lations. "' ' However, H2+ is not directly
Borel summable [(3) above].

Our main goals are a mathematical understanding
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of the Borel sum of the RSPT series and of its
relevance to the asymptotics of the series; the sys-
tematic determination of the full 1/2R expansion
including complex exponentially small contribu-
tions; and the derivation of the asymptotics of the
RSPT series for which the BZJ formula is a first ap-
proximation.

To begin qualitatively, we note first that the
ground-state RSPT series ~ould have alternating
signs if R were negative. In fact, the (physically in-
terpretable) Hamiltonian, K = ——,'7 —

i x i

+ix+Ri ', has the RSPT energy expansion

/Et l( —1) (2R), where the Etna come from
the corresponding RSPT series for H2+,
E (R) —/Et l (2R) . Unlike the double-well
oscillator, and contrary to general expectation, it
turns out that the Borel sum of the H2+ series for neg
ative R is not even an eigenvalue of E, which is a
stable, si ngle-well problem. ' To understand the
Borel sum, it is necessary to consider both Hamil-
tonians H and K simultaneously. Their perturba-
tion theories are subtly interconnected.

We note second that the full asymptotic expan-
sion for the energy, which we derive by a modified
semiclassical technique, has the form

Pi m' —1+
2

+ Vi(xi, pt+2P2, r) Vi(xi) =0,
4xi

d2 1+
dxi 4

(2)

E(R) —XE (2R) ++e "i"Xa (2R)

+e 2" "[Xd n (2R) ~+logR terms] +ie "$c (2R) n+. . ., (1)
where 8 is taken as 8 +i 0, and n is the principal quantum number. We find a remarkable result; that the
"sum" of this explicitly complex expansion is real and continuous for R positive, because the imaginary part
of the Borel sum of the RSPT series cancels the explicit imaginary series through order exp( —2R/n)

To continue more precisely, we first reformulate in scaled elliptic coordinates. The Schrodinger equation
for H is equivalent to two coupled ordinary differential equations (o.d.e. 's) [m =0, 1, 2. . . corresponds to
exp( +imP) ]:

t

d 1 P2 m —1+ +
2

+ V2(x2 P2 «) +2(x2) (3)

where Vi and V2are
Pt+ 2P2 m' —1

Vl(xl pl+2P2r)=-
2

+
4xi+ 2r

2

(x i+ 2r) ' x i(x i+ 2r) (4)

P2 m' —1
V2(x2, p2, r) = — +

2I" X2

1 2

(2r —x2) x2(2r —x2)
(5)

Here E = ——,y, r = R/y, y = p, + p2, 0 ~ xi = r ((—1) & ~, 0 (x2 ——r (q+ 1) ~ 2r. The usual elliptical
coordinates are 1 ~ ( & ~, —1 ~ 7i ~ 1, and 0 ~ P & 2m. The boundary conditions are
+,(x, ) = 0(xt +' i ) at zero, +2(x2) = 0 (x2 +' i ) at zero, and +2(x2) = 0((2r —x2) +' ) at 2r.

Although Eqs. (2) and (3) can be cast as eigenvalue equations for the separation constants p& and p2,
22 23

it is more convenient for proving analyticity and summability to proceed as follows: Let h. (pt+2P2, r) and
p, (P2, r) be the eigenvalues of the operators on the left-hand sides of Eqs. (2) and (3). Then p2= p2(r) is
defined implicitly by p, (P2, r) =0. In turn pt(r) is determined by A(p, +2P2(r), r) =0. Then r =f(R) is
the inverse function of R = ry(r), so that E(R) = ——,[y(f (R) ) ]

We get similar equations for the E problem, but instead of (4) and (5) (primes distinguish E from H)

P'i m' —1
Vi (xi, P't, r') = + +

xi+ 2r'
1

(xt+ 2r')'
2

xi(xt+ 2r') (6)

2 'i+
2

2 4
1 2

(2r' —x2) x2(2r' —x2)

Then E'(R') = ——,[y'(f'(R') )] 2, where R'= R exp(

+in�),

and the other primed variables have their
obvious meaning, e.g. , y'(r') =P&+p2. The boundary conditions are as for H.
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Our main results are two rigorous propositions
about summability and analyticity, and the
quasisemiclassically obtained expansion (1). De-
tails will appear later.

Proposition 1.—(i) The perturbation series for p2
is Borel summable not to p2(r), but to p'&(re '"),
the continuation (see below) of p'&(r') up to
r' = re ' (r & 0). [If the continuation is counter-
clockwise, the sum is p'&(re+' ).] (ii) The pertur-
bation series for pt is Borel summable to
pt(r, p', (re ' )), i.e. , the. solution of
X(pt+ 2pt(re '"),r) = 0. (iii) The perturbation
series for y is summable not to y(r), but to
y" (r) = pt(r, p'~(r ' ))+p'~(re ' ); therefore the
1/2R expansion for E is Borel summable not to
E(R) but to E"(R) = ——, [y"(f"(R))] ', where
f"(R) is the inverse function of R = ry" (r). Simi-

lar statements apply to E.
Proposition 2.—(i) The function p'&(r') is analyt-

ic for r' in D~ = [~ & ~r'~ & M, ~argr'~ & 37r/2, cut
on the negative r' axis), and continuous as ~r'~

within D~. The function p~(r, p'&(re ' )) is analyt-
ic in the sector D2= (~ &!r

~
& M, —vr/2

& argr & 37r/2, cut along the entire real axis), and
continuous as

~

r
~

~ in D2. The same is true for
E"(R). (ii) As r ~, Imy" (r) —7ra 2(2r)4~
xe ", where b=p, ( )= n, +( m+1)/2, and
a = n2!(nq+ m)!. If ImE" is the imaginary part of
the Borel sum, then

ImE" —7m a (2R/n) exp( —2R/n —2n),

where n = n j, + n2+ m + 1, rI ~ and n2 being parabol-
ic quantum numbers. (iii) We have

(r', p')) in
~argr'~ & —,~ —e, ~!r'~ & 8, for some B & 0. Now it
can be verified that BP,'(r', P't)/BP't A 0 for P'& near
p', (~) = n2+(m+I)/2 and r' in Dt. Hence, by
the analytic implicit function theorem, the function
p't = p't(r') exists and is analytic in D, , and it can
also be verified that its perturbation expansion is
Borel summable in D],. Now, for argr'= —~, i.e.,
r' = re ', r & 0, and for all suitable p, the pertur-
bation series of A. '(r', p) coincides with that of
p, (r, p). Therefore the Borel sum of the perturba-
tion series for pz(r) is the function defined by
X'(r', p) =0, i.e., pI(re ' ). Proposition 1 and as-
sertions (i) and (ii) of Proposition 2 follow from a
similar argument for Eq. (2). Now by Proposition 2
(ii), a standard approximate dispersion-relation ar-

gument, 3 "and the Cauchy formula, we can write

P2 =7r '
I r ImP'&(re ' )dr +O(e ).

ImE" (R) = +e "X(2R) c

[note the sign, which makes the "sum" of (1) real
and continuous on R & 0]. (iii) We have

ImP')(re ' ) =m(b P)'/q(r) +O(e '"),

where 2b, P2 is the double-well gap from Eq. (3),
and q (r) has an explicit 1/2r expansion computable
directly from RSPT.

Outline of the proof of Propositions 1 and 2.—Consider first the E version of Eq. (2) for
~argr'~ & n. The operator on the left is a real holo-
morphic family (of type 2) of m-sectorial opera-
tors2 Tt(r', p'&) in L (0, ~), for ~argr'~ & vr and

pt g C, if defined on domain H2(0, ~) with the
boundary condition at 0. Any eigenvalue h. '(r [, p')
is thus locally holomorphic in (r[, p') in that re-
gion. By complex scaling, 5 one sees that A.

' is actu-
ally locally holomorphic in the region
~argr'~ & 37r/2 cut along the negative real axis and
p', C C. Since

~ Vt (eax~, pI, r')~ tends to zero uni-
formly with respect to (0, p', ) as ~r'~ ~, it can be
shown that the resolvent of T~(r', p'~) converges in
norm to the unperturbed resolvent as ~r'~

provided that ~argr'~ & 3m/2, ~ImH~ & n/2,
Im0 & —argr'. Therefore, as is well known,
A.'(r', P't) is analytic in (r', P't) for r' in D~, locally
in p'&, and continuous as ~r'~ ~. Given the
analyticity in D], it can be proved by modifying the
Morgan-Simon argument that the perturbation ex-
pansion is strongly asymptotic' to A. '(r', p'~) uni-
formly in p'&. By the Watson-Nevanlinna

Then by o.d.e. arguments typical of these prob-
lems, ' it is seen that as r

Imp', (re ' ) —7ra '(2r) "e
Similarly, ImP~ (r, P't (re '")) —ImP'& (re ' )/r,
clinching Proposition 2(ii). Proposition 2(iii) then
follows by an easy inversion.

Outline of the quasisemi classical method—Consider first Eq. (3) in the rescaled variable

q =x2/r —1. We develop a recursive, perturbative,
multistep procedure for the wave function, based in

part on the Langer-Cherry refinement 8 of the
JWKB method.

Step 1.—Near 7!=0, Eq. (3) is Whittaker's equa-

1114

E = —m '( + )dx ImE" (x)x '+O(e ) ——n a e "(N+4n2+2m+1)!.
OO

Proposition 3.—(i) Any eigenvalue E (R) of H2+ ad-
mits the expansion (1) as R ~. (ii) We have theorem, this implies summability to X



VOLUME 52, NUMBER 13 PHYSICAL REVIEW LETTERS 26 MARcH 1984

tion. We put the solutions in the form
W= (m!) '(dp/drl) '

Mb l2(rp), where p sa-
tisfies a Riccati equation, and b = p2(~) + /J b (r).
The "index shift" Ab (r) turns out to be
0 (exp( —r) ).

Step 2.—We develop tb in the form

y —yyt 1(q)(2r) + f /Jb $6it+1(2f)

The boundary condition at 0 fixes both pi~1 and
the RSPT coefficients Pzt i. The boundary condi-
tion at q = 2 is then sufficient to determine the in-
dex shift /J. b through 0(exp( —r)). The require-
ment that the Riccati equation be satisfied through
0 (exp( —r) ) then determines the 01 1 (recursive-
ly) and also the ratio q (r) of the double-well half-

gap AP to /J. b as an expansion in I/2r.
Step 3.—The same approach can be carried out to

any order in exp( —r). There is in second ex-
ponential order an explicit imaginary contribution
to pz, which arises in a simple way from the asymp-
totics of the Whittaker M function. The imaginary
series is the square of the real series of
0(exp( —r)) for the gap, divided by the series
q (r) in Step 2. This justifies the BZJ formula. .

Step 4.—the same procedure is then applied to
the K Hamiltonian Eq. (11) to get an expansion for
p't(re ' ). For argument —(rr —e), the expansion
turns out to be the 1/2r series (whose Borel sum is
p', ). For argument —(rr + e), there is an additional
imaginary series proportional to e '. Since the
Borel sum has a cut on the real axis where the im-
aginary part changes sign, while p't has a(continu-
ous) direct analytic continuation, the imaginary
series represents twice the imaginary part of the
Borel sum pI(re ' ); it is also —2 times the
series of Step 3. Thus the imaginary series of Step
3 provides the counterterms that cancel the im-

aginary part of the Borel sum of the RSPT series for
p2(r).

Step 5.—Analogously, we find an imaginary
series for the discontinuity of pt(r, p't(re ' )) on
the negative r axis. It contains logr terms, which
lead to logN terms in the asymptotics of the pi~I
and E' I (cf. loge for 8 smallz9).

Step 6.—Elementary algebraic operations turn
results for pt+ pz into results for E(R).
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