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Starting with an expression for the fractal dimension d„of the unscreened perimeter of an

arbitrary fractal of dimension df, there are derived for the random superconducting network
the results s = (2 —d) + d„, from which follow y, = d„and d„=d —d„. Here s is the conduc-
tivity exponent, e, the conductance exponent, and d„ the fractal dimension of a random
walk on the network. For d = 2, these results differ from the Alexander-Orbach conjecture
by 0.3Q/o.

PACS numbers: 05.60.+w, 05.40.+j

How does one define the "surface" of an irregu-
lar ramified object, like a biological macromolecule
or crosslinked gel? This question is of great current
interest as one designs triggering systems that
operate by diffusing to specific "target sites" buried
at some point on the surface of a large invaginated
molecular structure. ' At first sight, it might seem
that this is a trivial question that can be answered
geometrically. Indeed, for percolation clusters
("gel macromolecules") it is rigorously known that
the number of surface sites is proportional to the
number of volume sites. However, of practical im-
portance is not the total number of surface sites but
rather the number of surface sites that can be
"reached" by a given penetrating object (e.g. , the
diffusion of an ion into the macromolecule). We
shall refer to this as the number of "unscreened"
surface sites, M„. We shall see that M„ is vastly
smaller than the total number of surface sites, since
the majority of sites are sufficiently "buried" in the
macromolecule that they are unreachable for all

practical purposes.
We shall first obtain a quantitative prediction for

the exponent d„characterizing the fashion in which
M„ increases with the molecular diameter

duM„—g ". For an ordinary Euclidean object (e.g. , a
hypersphere), d„=d —1 of course To calcu. late d„
for a general fractal of dimension df, we consider
the mean penetration depth A. (Fig. 1). Then

Note that (i) if d~ =d —df (the "codimension" of
the fractal), then the projectile can penetrate the
entire surface: we have X —( and d„=df, (ii) if
d~ ~, then it —( and d„=df —1.

The above considerations of an "unscreened pe-
rimeter" apply also when a particle attempts to
leave a macromolecule as well as to penetrate it (Fig.
1). For example, we can show that (2) can be used
to obtain the region of a percolation cluster from
which a random walk can "escape" and hence a
quantitative expression for the exponent s describ-
ing the divergence of the electrical conductivity a-

of a random superconducting network. In this sys-
tem, a fraction p of the bonds of a lattice carry zero
resistance and the rest carry unit resistance. This
model is also relevant to the divergence of the
shear viscosity of a polymer gel. To describe the
essential physics of this problem, deGennes sug-
gested that we consider a novel form of random
walker, which he called a "termite, " which per-
forms a normal random walk (d~ = 2) when off the
cluster (the "normal" bonds) but which moves ex-

d„= (df —1) + (d —df )/d~. (2)

M„—( f

To see how ( depends on lt. , we consider2 the aver-

age number of steps N„' —X ' that a projectile of
fractal dimension d~ takes before being absorbed in
the shell of width A. We expect W„' —1/p, where

df —d .
p =M„,/( —

g
f is the number density. Hence

&. Substituting in (1), we have

FIG. 1. Concept of the screening length P for a cluster
of arbitrary fractal dimension df, defined as the distance
that a projectile of fractal dimension d~ will penetrate. A
particle leaving the unscreened perimeter, indicated by a
heavy line, escapes and may be captured by the un-
screened perimeter of another cluster.
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To evaluate d„, we need to choose d~ in (2). For
df & 2, a random walk will penetrate the invaginat-
ed cluster more than another cluster so we set d~
= 2. For df & 2, the reverse is true and we choose
d~ = df. Thus

(d + df )/2 —1 (df ~ 2),
dQ

i d/df + df —2 ( df (2) .

Combining (3)—(5), we find o- —$'with

(5a)

(sb)

'1 —(d —df)/2 (df ~ 2), (6a)
$ =2 —d+d„='

i d/df + df —d (df ~~2). (6b)

Relation (6a) was recently conjectured to hold for
all d by Kertesz, ' but no argument supporting the
conjecture was given; (6) agrees with exact results"
for d = 1, 6 and is in accord with calculations of s

91
and df for d=2-4. For d=2, df= 4, & 2, and

(6b) reduces to

s = 2/df + df —2 = 0.9508. (7)

Since s = t for d = 2, where t is the exponent for the
random-resistor network, this result is about 0.3'/0

larger than the Alexander-Orback7 conjecture t
1= —,df =0.9479. Had we neglected the intercluster

penetration and used dp=2 for all d, then (6a)
would reduce to t =s =df/2. '

We can interpret our result (6) in very physical
terms by noting that the superconducting clusters
just below p, play the role of the "nodes" in the
"links-nodes-blobs" model of the random-resistor
or gelation network just above p, (Fig. 2). For the

tremely rapidly when on the clusters (the "super-
conducting" bonds). From the Einstein relation,
he concluded

o. —D —R /r,
(d df)where R —( f is the mean square diameter

of a cluster5 and ~ ' is the characteristic frequency
for the termite to jump from one cluster to another
(Fig. 1). Thus the termite is the complement of
the "ant" which models the conductivity of the
random-resistor network above the percolation
threshold by being required to execute a normal
random walk but only on the percolation cluster.
By definition, if the termite leaves the cluster at a
screened perimeter site, it reenters the cluster.
Since the termite spends the same amount of time
everywhere in the cluster and can jump into
another cluster only from an unscreened site, we
expect that ~ ' scales as

FIG. 2. Large superconducting clusters just below p,
separated by a distance of the order of g are connected in

"u
parallel by ( " resistors of order of unity joining the un-
screened perimeter sites. A complementary model of the
"links-nodes-blobs" model of the random-resistor net-
work just above p, .

random-resistor network, the conductance between
two nodes separated by a distance of the order of g
approaches zero with an exponent g= t —(d —2).
Similarly, for the superconducting network just
below p„ the conductance between two nodes
diverges with an exponent p, =s+ (d —2). Using
(6), we find that

Ws=du (8)

This result can be interpreted as follows: ( " resis-
tors (of order unity) join in parallel the unscreened
perimeters of two neighboring clusters (Fig. 2).

We conclude with two remarks: (i) Note that (6)
permits us to obtain an expression for the fractal
dimension of the random walk performed by the
termite. We can write

D =d(r )/dt —( (9)

since t —( " is the time required for an rms dis-
placement of the order of $. Combining (9) and
(3), we find s = 2 —d„, with

d =d —d' (10)
In "normal" diffusion, d„=2((r2) —t). In the

ant problem, d„=2 for d = 1 but 2 & d„& 6 for
2 & d & 6. In the termite problem, we have a dif-
ferent sort of anomalous diffusion: d & 2, with
d„=1 for a linear chain and 1 & d„& 2 for 1 & d
& 6 (Fig. 3). Moreover, (10) allows us to under-

stand why o. does not diverge for d =6: df = 4 and
d„=2, and so the termite simply cannot find the in-

cipient infinite cluster.
(ii) We can modify the original termite model to

describe two domains of interest, (a) (r ) « (
and (b) p )p, . The original termite model as-
sumes that the motion within a cluster is instan-
taneous. The predictions for the long-time regime,
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Ant

LJ W L3

dw4—

Termite

r » (, are unaffected by this assumption but for
short times the termite model predicts instantane-
ous motion while in reality the termite must take
some time to travel within a cluster. To find the
motion within the cluster, we note that for d = 1

the problem can be solved exactly. One finds from
2/d

the Langevin equation' that (r2) —t " for (r2)
with d„= l. If this behavior for short times

holds for all d [with d = d (d) of (10)], then we
can describe both short-time and long-time
behavior by the scaling form

(r') —t "f (t/r') (p & p, ), (»a)

where r' —( " is an effective collision time'3 and—2/d +1f (x) 1 for x«1 and f (x) —x " for
x » 1. For p & p, we expect the same long-time
behavior as for p =1 since for large r the motion is
dominated by the infinite superconducting network
with fractal dimensionality equal to d. For p = 1 (all
bonds superconductors), it follows from the
Langevin equation' that (r ) —t . Scaling there-
fore predicts for p & p,

(r') —t f+(t/r') (p & p, ), (1 lb)

where f+ (x) 1 for x « 1 and f+ (x)—2/d~ + 2—x for x » 1.
In summary, we have seen that the concept of

unscreened perimeter (not yet used in percolation)
is relevant to the random superconducting network,
and have obtained s=2 —d+d„, p, =d„, and d
= d —d„, where d„ is given by (5). We conclude by

I I I I I I I I I

0 1 2 5 4 5 6 7 8 9 10
d

FIG. 3. Dependence on d of the fractal dimension of a
dwrandom walk d„(t—g ) for anomalous diffusion mod-

eled by the ant (squares) and by the termite (triangles).
The value d„= 2 corresponds to normal diffusion, while
d & 2 is anomalously slow ("Ant") and d„& 2 is
anomalously fast ("Termite" ) .

noting that all the results of this paper can also be
obtained if we collapse to a single point all the sites
that are joined by superconducting links. The set of
clusters then becomes a set of points with many
normal bonds emanating from each. Since all the
bonds are normal conductors, we can apply the
random-walk concepts to these bonds. This ap-
proach appears to be more useful for the purpose of
Monte Carlo simulations and will be reported on
elsewhere.

Note added. —Our finding that the Alexander-
Qrbach conjecture should fail for d =2 has not yet
been unambiguously confirmed, despite very recent
numerical calculations of high accuracy. ' ' How-
ever, our result that df =2 is the critical dimension
for our problem is consistent with recent argu-
ments' for df = 2 being a critical dimension for the
breakdown of statistical independence of fluctua-
tions of growth sites.
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