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Operational Approach to Phase-Space Measurements in Quantum Mechanics
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An operational formula is derived for a positive phase-space distribution function in quan-
tum mechanics. It is shown that this expression, which is based on a realistic detection
mechanism, has many attractive features. The possibility of an application of such a proba-
bility distribution to a nonlinear wave mechanics is also briefly mentioned.
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The idea of a phase-space probability distribution
function in quantum mechanics has attracted a lot
of interest since the pioneering work of Wigner' in
which the relation
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between the wave function P and a phase-space
function 8'& was proposed. It was shown later that
this very simple relation is in fact unique if some
general conditions are satisfied. It was clear to
Wigner from the beginning that 8'& cannot really
be interpreted as the phase-space probability distri-
bution function because it may take negative
values. In fact, Wigner has shown later that general
conditions leading to unique definition of 8'& are
incompatible with N

&
~ 0 for all p and q.

In order to overcome this apparent difficulty,
various rather artificial smoothing procedures4 of
the Wigner function or different definitions5 of the
phase-space distributions have been proposed. A
different approach based on the concept of the so-
called fuzzy space or the Menger-Wald statistical
metric space has also been advocated in order to
maintain a positive definite statistical phase-space
description of quantum mechanics.

The main weakness of most of these approaches
is how little attention they pay to the actual relation
of such ad Aoc procedures to realistic quantum
mechanical measurements. In fact the very ques-
tion why 8'& should be a measurable probability
distribution function in phase space at all has been
completely missing in most of these discussions.

Following the opinion expressed by Lamb that,
"In discussion of the measurement of some
dynamical variable of a physical system I want to
know exactly what apparatus is necessary for the
task and how to use it, at least in principle, " there
is little justification for the physical meaning of any
of these phase-space distributions. If the main

result of these different approaches to the definition
of a phase-space distribution is only mathematical,
i.e., if the introduced functions themselves are not
regarded as measurable objects but only as a means
of calculating measurable quantities, then the most
fundamental question remains open: Is it possible
to define a realistic phase-space function that can be
recorded in the laboratory~

It is the purpose of this Letter to give an opera-
tional physical definition of a quantum mechanical
phase space. In the spirit of Lamb's remark, I
derive a positive definite quantum probability distri-
bution P (q,p) which is directly connected to a real-
istic measurement. As will be seen clearly later on,
the fundamental feature of the operational P(q,p)
is that, in addition to the particle to be measured
and its detector, it requires for its definition a de-
vice acting as a filter. This filter is needed, as a
matter of principle, in order to resolve the current
position and momentum of the investigated system.

The idea that in any realistic measurement a
detector and a filtering device are required is not
really quantum mechanical in nature. For spectral
measurements in optics filtering devices such as the
Fabry-Perot interferometer, for example, have been
known for years. What really is new and what has
been realized for time and frequency measurements
in optics and acoustics is a necessary influence of
the filter property on any resolved observation of
the phase-space dynamics. All earlier mathemati-
cal attempts' to define a temporal evolution of a
spectrum without the filtering mechanism resemble
or in many cases are identical to various smoothing
procedures of the quantum mechanical Wigner
function. . How important the filtering mechanism is
for a proper definition of a quantum phase-space
measurement will be seen below.

Now I shall propose an experimental setup in or-
der to exhibit the role of the filtering mechanism in
the derivation of an operational definition of a
phase-space distribution function. This setup may
not be the most convenient for practical measure-
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ments but has all the characteristics that permit us
to perform an idealized but fairly general calcula-
tion, which I confirm at the end of this Letter from
a much more formal mathematical argument.

For a possible scheme of a one-dimensional posi-
tion and momentum measurement of a charged
particle, I propose to use a pulsed interaction (laser
pulses, for example)" with potential U~(x) cen-
tered around a detected position q and produced in

5(t —tp)-like form at time tp. The wave function
of the moving particle with velocity v couples to

such a filter via the standard interaction potential

Vq(x, t) = U~(x)~(t tp). Changing the parameter

q of the interaction potential, we can scan all x.
The result of the interaction then gives us informa-
tion on the position of the particle at time tp B.y

analogy to the detection mechanism in optics, this
interaction potential plays the role of the filtering
device which can be "tuned" by simply changing q.
This filter scatters the wave function of the mea-

sured particle. In the Born approximation, the scat-
tered wave function of the moving particle is given

I by

(xt) =
J dt J dx K()(xt xt ) V'q(x t )y(x t ) (2)
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where Kp is the free Schrodinger propagator whch in the far zone from the interaction region, along a
straight line determined by the velocity of the particle x = v t, has the following asymptotic form':

t t t

The square of the modulus of the scattered wave measured by a detector located far from the interaction re-
gion contains now measurable information about the position q and momentum p = mv of the detected parti-
cle qt) at time tp The in. teraction potential U~(x), which for example in the case of laser pulse scattering is

simply an electric field envelope, can be easily associated with an experimental quantum mechanical state of
the filtering device denoted for notational reasons by (lq'(x + q ). Following the Feynman approach, '3 we can
~rite this squared modulus as

dx' K,„p(x,t;x', tp) P(x', tp) i'

where K,„~=Kp V& is the propagator for going through our experimental filtering device. This propagator is
proportional to Kp(C('(x+ q), i.e. , to a reference wave function of the filter.

From Eqs. (2) and (3) we obtain the following two-parameter expression for the squared modulus of the
scattered wave that I propose to call the operational phase-space probability distribution:

P(q,p) = (27') 'i
J~ dx exp( —ipxjt)(l)'(x+q)qt)(x) i . (4)

The normalization coefficient in this expression is chosen in such a way that

„dq Ji dp P (q,p) = (ply) (@I@) = I

if the wave functions of the filter and of the measured object are normalized. The expression (4) is a central
result of this paper. Except for the Planck-cell normalization, mathematically Eq. (4) is completely
equivalent to an operational definition of a time-dependent spectrum of light. As in the case of optical mea-
surements, it involves both the filter and the detected object in its definition. In order to make a closer con-
tact with the phase-space dynamics, I will show some remarkable properties of this quantum mechanical dis-
tribution function. The marginal average of P (q,p) in q space has the following form:

p(q) = fqq)'(qq) = fdx 0'(x)q(x)qI'(x+q)q(x+q)

This equation leads to the following phase-space expectation value of q.

(q ) p ——Jtdq qP (q ) = (x) ~
—(x) @

(6)

(7)

with (x)&=„dxQ'(x)xQ(x). Formula (7) shows that (q)P measures the relative position of the detected
state P with respect to a reference given by the position of the filter p. This result is in full agreement with

the way in which we have constructed the phase-space probabiltiy distribution function from a detection
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mechanism with a reference filter device. The phase-space second moment of q has the following form:

(q }p= Jtdq q P(q) = (x }&
—2(x) &(x}~+(x }~,

i.e., as in the case of (q }p, the fluctuations of both the measuring and detected wave functions contribute.
For noncommuting observables the statistical average in phase space is more complicated and, for exam-

ple, we have

(12)

= (27rf ) ' Tr [p U '(qp )PU(qp ) ].
For a pure state, i.e. , if p = l(t)} (qt)1, Eq.
reduces to the formal (4). Equation (11) can be
easily generalized to other unitary transformations
involving, for example, rotations or Poincare
transformations giving in such a way probability dis-

(qp}P=„dq Jldp qPP(qp) =(qp} (q—} (P} —(q} (P} +(qP} ~ (9)

where (qp}&= —, (xp+px}&, i.e. , a Weyl ordering of quantum operators is obtained. The appearance of the

Weyl ordering in Eq. (8) and the easy-to-obtain general pattern for all higher phase-space moments of q and

p result from the following connection of P (q,p) with the Wigner function (1):

P(q,p) =
J~ dx„' dp' 8'~(q +x,p+ p') W~(x,p'), (10)

i.e., the operational phase-space distribution func-
tion is given by an overlap of the detected and of the tributions associated with different "conjugated
filtering Wigner functions. Equation (10) can be variables. "
simply obtained by combining the definition of the From Eq. (4) we see that
Wigner function with the operational phase-space P(0 0) = (2~ii) —

'1(([il(t)}12
probability distribution given by Eq (4). Equation

i.e., a very close relation between a phase-space dis-
answers also the fundamental question of the

tribution and the Hilbert-space scalar product holds.
proper relation between the signer distribution

In an attempt to interpret the Hilbert-space scalar
function and a realistic phase-space measurement in
quantum mechanics. In fact, this relation is univer- product in terms of a relation or a propensity

sal. In optics and acoustics Eq. &4) or pi0) is very
between two or more distinct physical systems, ob-

closely related to the time-dependent spectrum, 6 t7
jects close to Eqs. 10 and 12 have been dis-

resolved by the frequency filtering device. cussed recently. Here we have given a full
operational justification for Eq. (10), deriving it%e can obtain now the operational phase-space
from a realistic dynamical filtering process [see Eqs.distribution probability i4) from a more formal ar-

gument. The probability of finding a state
1 } in (2) and (4)]. From this derivation it is clear that ([i

should be attributed to the state of the filtering de-
another state described by the density matrix p is
equal to Tr(PP) where P =1([i}(Ql. We can regard

p as the filtering device In At this Point, we see a Possible flexibility of the

order to compare states in phase space, we need to quantity P q,p for theories which propose a non-

"shift" one with respect to the other by amounts q
linear generalization of the Schrodinger equation. '

and p, respectively. In the q coordinate, this shift For such nonlinear equations, the standard

can be done by the operator exp(iqp) where p is the Hilbert-space interpretation of quantum mechanics

space translation generator. In the p space, the does not hold any more. Nevertheless, for such
theories the concept of a phase-space probability
distribution can have a very well defined operation-

operations in the unitary operator U(q, p) we intro- al meaning.
Let us illustrate this point for a hypotheticalduce

detector based on our light-pulse filter which has its
P(q,p) own internal dynamics that can be described in the

scattering process only by the second-order Born
approximation. Following calculations similar to
the one leading to Eq. (4) we obtain for our non-
linear filter

P(q,p)
dx dp' 8'&~ )

q +~,p+p' g p' 13

where

)pe"i (q p) = f(dxlqeq)tp"'(q + —,'x) q'(q —
—,x)exp(ipx/q) (14)

1066



VOLUME 52, NUMBER 13 PHYSICAL REVIEW LETTERS 26 MARCH 1984

is a generalized quartic Wigner function. From Eq.
(13) we obtain

P(0, 0) = (2nh) '~~tdx q'(x)P(x) ~'

and an obvious non-Hilbert structure between the
measured state Q and the detector state tti does
emerge.
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